-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_activations.py
464 lines (374 loc) · 14.2 KB
/
evaluate_activations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
import torch
# torch.cuda.set_per_process_memory_fraction(0.2, device=0)
print("segment anything")
from segment_anything import SamPredictor, sam_model_registry
print("importing")
sam = sam_model_registry["default"]("./models/sam_02-06_dice.pth")
sam.cuda()
print("defining")
predictor = SamPredictor(sam)
import tensorflow as tf
gpu_devices = tf.config.experimental.list_physical_devices("GPU")
tf.config.experimental.set_memory_growth(gpu_devices[0], True)
import os
import numpy as np
# from losses import *
# from models import get_triplet_model,get_triplet_model_simclr,get_triplet_model_beit
from data import mocking_ds, leaves_fewshot_ds
from sklearn.metrics import classification_report
from Craft.craft.new_craft_tf import Craft
import pandas as pd
import multiprocessing as mp
# import segmentation_models as sm
import json
# sm.set_framework('tf.keras')
# sm.framework()
import cv2
import helpers
print("Setting Parameters")
AUTOTUNE = tf.data.AUTOTUNE
MARGIN = 0.152
EPOCHS = 50
LR = 0.006515
LAMBDA_TRIPLET_CLASS = 0.343 * 2
LAMBDA_TRIPLET_XDOMAIN = 0.343
NUMBER_CLASSES = 55
CKPT_DIRECTORY = (
"/users/irodri15/data/irodri15/Fossils/Experiments/softmax_triplet_tf2.0"
)
NAME = "TEST_beit"
SIZE = 384
CrossEntropy = tf.keras.losses.CategoricalCrossentropy(from_logits=True)
from torch.nn import functional as F
def show(img, p=False, smooth=False, **kwargs):
"""Display torch/tf tensor"""
try:
img = img.detach().cpu()
except:
img = np.array(img)
img = np.array(img, dtype=np.float32)
# check if channel first
if img.shape[0] == 1:
img = img[0]
elif img.shape[0] == 3:
img = np.moveaxis(img, 0, -1)
# check if cmap
if img.shape[-1] == 1:
img = img[:, :, 0]
# normalize
if img.max() > 1 or img.min() < 0:
img -= img.min()
img /= img.max()
# check if clip percentile
if p is not False:
img = np.clip(img, np.percentile(img, p), np.percentile(img, 100 - p))
if smooth and len(img.shape) == 2:
img = gaussian_filter(img, smooth)
plt.imshow(img, **kwargs)
plt.axis("off")
plt.grid(None)
def pad_gt(x):
h, w = x.shape[-2:]
padh = sam.image_encoder.img_size - h
padw = sam.image_encoder.img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x
def preprocess(img):
img = np.array(img).astype(np.uint8)
# assert img.max() > 127.0
img_preprocess = predictor.transform.apply_image(img)
intermediate_shape = img_preprocess.shape
img_preprocess = torch.as_tensor(img_preprocess).cuda()
img_preprocess = img_preprocess.permute(2, 0, 1).contiguous()[None, :, :, :]
img_preprocess = sam.preprocess(img_preprocess)
if len(intermediate_shape) == 3:
intermediate_shape = intermediate_shape[:2]
elif len(intermediate_shape) == 4:
intermediate_shape = intermediate_shape[1:3]
return img_preprocess, intermediate_shape
def normalize(img):
img = img - tf.math.reduce_min(img)
img = img / tf.math.reduce_max(img)
img = img * 2.0 - 1.0
return img
def resize(img):
# default resize function for all pi outputs
return tf.image.resize(img, (SIZE, SIZE), method="bicubic")
def smooth_mask(mask, ds=7):
shape = tf.shape(mask)
w, h = shape[0], shape[1]
## apply a gaussian filter to the mask
mask = tf.cast(mask, tf.float32)
mask = tf.expand_dims(mask, -1)
mask = tf.image.resize(mask, (ds, ds), method="bicubic")
mask = tf.image.resize(mask, (w, h), method="bicubic")
mask = tf.squeeze(mask, -1)
return mask
def gaussian_kernel(kernel_size, sigma):
"""Manually creates a Gaussian kernel."""
x_range = tf.range(-(kernel_size // 2), kernel_size // 2 + 1, dtype=tf.float32)
y_range = tf.range(-(kernel_size // 2), kernel_size // 2 + 1, dtype=tf.float32)
x, y = tf.meshgrid(x_range, y_range, indexing="ij")
gaussian_kernel = tf.exp(-(tf.square(x) + tf.square(y)) / (2 * tf.square(sigma)))
return gaussian_kernel / tf.reduce_sum(gaussian_kernel)
def smooth_mask_v2(mask, kernel_size=5, sigma=1.0):
"""Applies Gaussian smoothing on a mask."""
# Add batch and channel dimensions
mask = mask[tf.newaxis, ..., tf.newaxis]
# Create Gaussian kernel
gauss_kernel = gaussian_kernel(kernel_size, sigma)
gauss_kernel = gauss_kernel[:, :, tf.newaxis, tf.newaxis]
# Apply Gaussian filter
smoothed_mask = tf.nn.conv2d(
mask, gauss_kernel, strides=[1, 1, 1, 1], padding="SAME"
)
# Remove batch and channel dimensions
smoothed_mask = tf.squeeze(smoothed_mask)
return smoothed_mask
def pi(img, mask):
img = tf.cast(img, tf.float32)
shape = tf.shape(img)
w, h = tf.cast(shape[0], tf.int64), tf.cast(shape[1], tf.int64)
mask = mask.cpu().numpy().astype(float)[0]
# apply morph open and morph close
mask = smooth_mask_v2(mask).numpy()
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, np.ones((13, 13), np.uint8))
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, np.ones((13, 13), np.uint8))
mask = cv2.dilate(mask, np.ones((5, 5), np.uint8), iterations=3)
mask = cv2.erode(mask, np.ones((5, 5), np.uint8), iterations=2)
#
# mask = tf.reduce_mean(mask, -1)
img = img * tf.cast(mask > 0.1, tf.float32)[:, :, None]
img_resize = tf.image.resize(img, (SIZE, SIZE), method="bicubic", antialias=True)
img_pad = tf.image.resize_with_pad(
img, SIZE, SIZE, method="bicubic", antialias=True
)
# building 2 anchors
anchors = tf.where(mask > 0.2)
anchor_xmin = tf.math.reduce_min(anchors[:, 0])
anchor_xmax = tf.math.reduce_max(anchors[:, 0])
anchor_ymin = tf.math.reduce_min(anchors[:, 1])
anchor_ymax = tf.math.reduce_max(anchors[:, 1])
if anchor_xmax - anchor_xmin > 50 and anchor_ymax - anchor_ymin > 50:
img_anchor_1 = resize(img[anchor_xmin:anchor_xmax, anchor_ymin:anchor_ymax])
delta_x = (anchor_xmax - anchor_xmin) // 4
delta_y = (anchor_ymax - anchor_ymin) // 4
img_anchor_2 = img[
anchor_xmin + delta_x : anchor_xmax - delta_x,
anchor_ymin + delta_y : anchor_ymax - delta_y,
]
img_anchor_2 = resize(img_anchor_2)
else:
img_anchor_1 = img_resize
img_anchor_2 = img_pad
# building the anchors max
anchor_max = tf.where(mask == tf.math.reduce_max(mask))[0]
anchor_max_x, anchor_max_y = anchor_max[0], anchor_max[1]
img_max_zoom1 = img[
tf.math.maximum(anchor_max_x - SIZE // 6, 0) : tf.math.minimum(
anchor_max_x + SIZE // 6, w
),
tf.math.maximum(anchor_max_y - SIZE // 6, 0) : tf.math.minimum(
anchor_max_y + SIZE // 6, h
),
]
img_max_zoom1 = resize(img_max_zoom1)
img_max_zoom2 = img[
anchor_max_x - SIZE // 2 : anchor_max_x + SIZE // 2,
anchor_max_y - SIZE // 2 : anchor_max_y + SIZE // 2,
]
img_max_zoom2 = img[
tf.math.maximum(anchor_max_x - SIZE // 3, 0) : tf.math.minimum(
anchor_max_x + SIZE // 3, w
),
tf.math.maximum(anchor_max_y - SIZE // 3, 0) : tf.math.minimum(
anchor_max_y + SIZE // 3, h
),
]
# cv2.imwrite('img.jpg',img_resize.numpy())
# cv2.imwrite('img_max_zoom1.jpg',img_max_zoom1.numpy())
# cv2.imwrite('img_max_zoom2.jpg',img_max_zoom2.numpy())
# cv2.imwrite('img_anchor_1.jpg',img_anchor_1.numpy())
# cv2.imwrite('img_anchor_2.jpg',img_anchor_2.numpy())
# tf.print(img_max_zoom2.shape)
img_max_zoom2 = resize(img_max_zoom2)
return tf.cast(
[
img_resize,
# img_pad,
img_anchor_1,
img_anchor_2,
# img_max_zoom1,
# img_max_zoom2,
],
tf.float32,
)
def one_step_inference(x):
if len(x.shape) == 3:
original_size = x.shape[:2]
elif len(x.shape) == 4:
original_size = x.shape[1:3]
x, intermediate_shape = preprocess(x)
with torch.no_grad():
image_embedding = sam.image_encoder(x)
with torch.no_grad():
sparse_embeddings, dense_embeddings = sam.prompt_encoder(
points=None, boxes=None, masks=None
)
low_res_masks, iou_predictions = sam.mask_decoder(
image_embeddings=image_embedding,
image_pe=sam.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=False,
)
if len(x.shape) == 3:
input_size = tuple(x.shape[:2])
elif len(x.shape) == 4:
input_size = tuple(x.shape[-2:])
# upscaled_masks = sam.postprocess_masks(low_res_masks, input_size, original_size).cuda()
mask = F.interpolate(low_res_masks, (1024, 1024))[
:, :, : intermediate_shape[0], : intermediate_shape[1]
]
mask = F.interpolate(mask, (original_size[0], original_size[1]))
return mask
def segmentation_augmentation(batch_input, batch_size):
seg_model = tf.keras.models.load_model(
"segmentor_model/segmentation_model_576.h5",
custom_objects={
"binary_crossentropy_plus_jaccard_loss": sm.losses.binary_focal_jaccard_loss,
"iou_score": sm.metrics.iou_score,
},
)
seg_preprocess_input = sm.get_preprocessing("efficientnetb0")
X = tf.image.resize(batch_input, (SIZE, SIZE))
predicted_mask = one_step_inference(X)
# X = seg_preprocess_input(batch_input).numpy()
# out = seg_model.predict(X, batch_size=batch_size)
mask = predicted_mask > 0.3
samples = pi(img, mask)
return samples
def segmentation_sam(batch_input, batch_labels, batch_domain, batch_size):
X = tf.image.resize_with_pad(batch_input, SIZE, SIZE)
samples = []
labels = []
domains = []
for x, y, d in zip(X, batch_labels, batch_domain):
predicted_mask = one_step_inference(x)
# X = seg_preprocess_input(batch_input).numpy()
# out = seg_model.predict(X, batch_size=batch_size)
mask = predicted_mask > 0.99
mask = mask[0]
total_mask = mask.shape[0] * mask.shape[1]
mask_sum = mask.sum()
# without mask
if d == 1:
# if mask_sum <total_mask*0.9:
mask = torch.ones_like(mask.cpu())
else:
if mask_sum < total_mask * 0.15:
mask = torch.ones_like(mask.cpu())
# mask = tf.ones_like(mask.cpu())
sample = pi(x, mask)
reps = sample.shape[0]
label = tf.repeat([tf.math.argmax(y)], reps, axis=0)
samples.append(sample)
labels.append(label)
domains.append(tf.repeat([d], reps, axis=0))
return (
tf.stack(samples, axis=0),
tf.stack(labels, axis=0),
tf.stack(domains, axis=0),
)
def store_metric(store, key, value):
if len(value.shape) == 0:
value = tf.expand_dims(value, 0)
store[key] = value if store[key] is None else tf.concat([store[key], value], axis=0)
def store_object(store, key, value):
if len(value.shape) == 0:
value = tf.expand_dims(value, 0)
store[key] = value if store[key] is None else tf.concat([store[key], value], axis=0)
def print_metric(store):
s = ""
for key in store.keys():
s += f" || {key}: {tf.reduce_mean(store[key])}"
print(s)
def topK_metrict(values):
top3 = []
top5 = []
for i, logit in enumerate(values["logits"]):
sort_logits = np.argsort(logit)
if values["labels"][i] in sort_logits[-3:]:
top3.append(values["labels"][i])
else:
top3.append(sort_logits[-1])
if values["labels"][i] in sort_logits[-5:]:
top5.append(values["labels"][i])
else:
top5.append(sort_logits[-1])
return top3, top5
def print_report(values, directory, epoch_i):
top3, top5 = topK_metrict(values)
print("TOP 1 : /n")
cf1 = classification_report(
values["labels"], values["predictions"], output_dict=True
)
cf1 = pd.DataFrame.from_dict(cf1)
cf1.to_csv(os.path.join(directory, "Classification_Report_top1%04d.csv" % epoch_i))
print(classification_report(values["labels"], values["predictions"]))
print("TOP 3: /n")
cf3 = classification_report(values["labels"], top3, output_dict=True)
cf3 = pd.DataFrame.from_dict(cf3)
cf3.to_csv(os.path.join(directory, "Classification_Report_top3%04d.csv" % epoch_i))
print(classification_report(values["labels"], top3))
print("TOP 5: /n")
cf5 = classification_report(values["labels"], top5, output_dict=True)
cf5 = pd.DataFrame.from_dict(cf5)
cf5.to_csv(os.path.join(directory, "Classification_Report_top5%04d.csv" % epoch_i))
print(classification_report(values["labels"], top5))
def evaluate():
patch_size = 128 # changed from 192
craft = Craft(
input_to_latent=g,
latent_to_logit=h,
number_of_concepts=142,
patch_size=patch_size,
batch_size=64,
)
activations_and_patches = np.load("./activations/activations_patches_resnet2.npz")
activations = activations_and_patches["activations"]
patches = activations_and_patches["patches"]
patch_labels = activations_and_patches["labels"]
image_activations = activations_and_patches["image_activations"]
final_labels = activations_and_patches["class_labels"]
print(f"All activations: {activations.shape[0]}")
crops, crops_u, w = craft.activation_transform(activations, patches)
print(
f"crops shape: {crops.shape}, crops_u shape: {crops_u.shape}, w shape: {w.shape}"
)
importances = craft.new_estimate_importance(
image_activations, class_labels=final_labels
)
most_important_concepts = helpers.plot_new_histogram(
importances, histogram_dir, 108, 20
)
helpers.save_classwise_crops(
most_important_concepts,
importances,
crops_u,
crops,
patch_labels,
save_crops,
108,
25,
)
if __name__ == "__main__":
# model_path = "./models/BEITmodel-9.h5"
model_path = "./models/resnet_model-9.h5"
save_crops = "./crops/fossils_leaves_crops/exp1_Resnet_128_142_trial2"
histogram_dir = "./histogram/exp1_Resnet_128_142_trial2"
# model, g, h = helpers.get_model(model_path)
model, g, h = helpers.get_resnet_model(model_path)
batch_size = 64
SIZE = 384
evaluate()