-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstage2.py
382 lines (362 loc) · 11.6 KB
/
stage2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import os
from src.datasets import (
IntraWeightDataset,
VascWeightDataset,
sorted_permute_mlp,
random_permute_mlp,
random_permute_flat,
)
# Using it to make pyrender work on clusters
os.environ["PYOPENGL_PLATFORM"] = "egl"
import sys
from datetime import datetime
from os.path import join
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
from torch.utils.data import DataLoader, random_split
import wandb
import argparse
import warnings
warnings.filterwarnings("ignore")
import datetime
import json
import os
import time
from pathlib import Path
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import ConcatDataset, random_split
from glob import glob
import wandb
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
from glob import glob
import wandb
from tqdm import tqdm, trange
from datetime import datetime
import pytorch_lightning as pl
import sys
from src.trainer import DiffusionTrainer
from src.utils import (
select_sampling_method_online,
get_mlps_batched_params,
flatten_mlp_params,
unflatten_mlp_params,
Config,
calculate_fid_3d,
)
import mcubes
import trimesh
from src.models import ResnetFC
def run(args):
if args.test_only and args.ckpt_path is not None:
run_name = Path(args.ckpt_path).parent.stem.split(f"{args.dset_name}_")[-1]
else:
run_name = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
wandb_logger = pl.loggers.WandbLogger(
project="inr2vec",
entity="sinashish",
name=f"DM_{args.output_dir.stem}",
tags=[args.dset_name],
config=args,
)
print("wandb", wandb.run.name, wandb.run.id)
slurm_plugin = pl.plugins.environments.SLURMEnvironment()
if args.dset_name == "intra":
dataset_train = IntraWeightDataset(
args, args.data_path, split="train", sample_sd=None
)
dataset_val = IntraWeightDataset(
args, args.data_path, split="val", sample_sd=None
)
dataset_test = IntraWeightDataset(
args, args.data_path, split="test", sample_sd=None
)
elif args.dset_name == "vasc":
dataset_train = VascWeightDataset(
args, args.data_path, split="train", sample_sd=None
)
dataset_val = VascWeightDataset(
args, args.data_path, split="val", sample_sd=None
)
dataset_test = VascWeightDataset(
args, args.data_path, split="test", sample_sd=None
)
# initialize INR
mlp = ResnetFC(d_in=3, d_latent=0, d_out=1)
state_dict = mlp.state_dict()
layers = []
layer_names = []
for l in state_dict:
shape = state_dict[l].shape
layers.append(np.prod(shape))
layer_names.append(l)
# initialize Diffusion Transformer
trans_kwargs = dict(
n_embd=args.n_embed,
n_layer=args.n_layers,
n_head=args.n_heads,
split_policy=args.split_policy,
use_global_residual=args.use_global_residual,
condition=args.condition,
)
model = Transformer(layers, layer_names, **trans_kwargs).cuda()
data_loader_train = torch.utils.data.DataLoader(
dataset_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
prefetch_factor=2,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val,
batch_size=1,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
data_loader_test = torch.utils.data.DataLoader(
dataset_test,
batch_size=1,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
print(
"Train dataset length: {} | Val dataset length: {} | Test dataset length: {}".format(
len(dataset_train), len(dataset_val), len(dataset_test)
)
)
input_data = next(iter(data_loader_train))[0]
print(
"Input data shape, min, max:",
input_data.shape,
input_data.min(),
input_data.max(),
)
mlp_kwargs = dict(
mlp_type=cfg.mlp_type,
model_type=cfg.mlp_type,
output_type="occ",
mlp_dims=cfg.mlp_dims,
out_size=1,
out_act="sigmoid",
)
# Initialize Trainer
diffuser = DiffusionTrainer(
model,
dataset_train,
dataset_val,
dataset_test,
mlp_kwargs,
input_data.shape,
method,
args,
)
# Specify where to save checkpoints
checkpoint_path = join(
args.output_dir,
"DM",
f"{args.dset_name}_{run_name}",
)
Path(checkpoint_path).mkdir(parents=True, exist_ok=True)
best_acc_checkpoint = ModelCheckpoint(
save_top_k=1,
monitor="val/1-NN-CD-acc",
mode="min",
dirpath=checkpoint_path,
filename="best-val-nn-model",
)
best_mmd_checkpoint = ModelCheckpoint(
save_top_k=1,
monitor="val/lgan_mmd-CD",
mode="min",
dirpath=checkpoint_path,
filename="best-val-mmd-model", # {epoch:02d}-{train_loss:.2f}-{val_fid:.2f}",
)
last_model_saver = ModelCheckpoint(
dirpath=checkpoint_path,
filename="last", # -{epoch:02d}-{train_loss:.2f}-{val_fid:.2f}",
save_on_train_epoch_end=True,
)
ddp_strategy = pl.strategies.ddp.DDPStrategy(
find_unused_parameters=False,
process_group_backend="nccl", # opt.dist_backend,
)
lr_monitor = pl.callbacks.LearningRateMonitor(logging_interval="epoch")
trainer = pl.Trainer(
accelerator="gpu",
devices=torch.cuda.device_count(),
max_epochs=args.epochs,
precision=32,
strategy=ddp_strategy,
gradient_clip_val=2.0,
logger=wandb_logger,
default_root_dir=checkpoint_path,
callbacks=[
best_acc_checkpoint,
best_mmd_checkpoint,
last_model_saver,
lr_monitor,
],
plugins=[slurm_plugin] if os.getenv("SLURM_JOB_ID") else None,
check_val_every_n_epoch=100,
num_sanity_val_steps=0,
accumulate_grad_batches=args.accum_iter,
)
if not args.test_only:
# If model_resume_path is provided (i.e., not None), the training will continue from that checkpoint
trainer.fit(diffuser, data_loader_train, data_loader_val)
# best_model_save_path is the path to saved best model
print("testing on test set")
trainer.test(
diffuser,
data_loader_test,
ckpt_path=args.ckpt_path if args.test_only else None,
)
print("testing on val set")
trainer.test(
diffuser,
data_loader_val,
ckpt_path=args.ckpt_path if args.test_only else None,
)
print("testing on train set")
trainer.test(
diffuser,
data_loader_train,
ckpt_path=args.ckpt_path if args.test_only else None,
)
wandb_logger.finalize("Success")
if __name__ == "__main__":
parser = argparse.ArgumentParser("Stage 1")
parser.add_argument(
"--batch_size",
"-bs",
default=8,
type=int,
help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus",
)
parser.add_argument(
"--dset_name", default="vasc", type=str, choices=["vasc", "intra"]
)
parser.add_argument("--epochs", "-e", default=6000, type=int)
parser.add_argument(
"--accum_iter",
"-ai",
default=1,
type=int,
help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)",
)
parser.add_argument("--ckpt_path", default=None, help="checkpoint")
parser.add_argument(
"--weight_decay",
"-wd",
type=float,
default=5e-5,
help="weight decay (default: 0.05)",
)
parser.add_argument(
"--lr",
type=float,
default=1e-3,
metavar="LR",
help="learning rate (absolute lr)",
)
parser.add_argument(
"--nsample",
type=int,
default=10000,
)
parser.add_argument(
"--inrs_root",
"-i",
type=str,
default="/localscratch/asa409/intra_vessels/INR_PROCESSED_DATA/VASC_INR_occ/",
help="path to the root directory of point cloud data",
)
parser.add_argument(
"--data_path",
default="/localscratch/asa409/intra_vessels/INR_PROCESSED_DATA/VASC_INR_occ/",
type=str,
help="dataset path",
)
parser.add_argument(
"--output_dir",
default="/localscratch/asa409/intra_vessels/output/",
help="path where to save, empty for no saving",
)
parser.add_argument(
"--log_dir", default="./output/", help="path where to tensorboard log"
)
parser.add_argument(
"--device", default="cuda", help="device to use for training / testing"
)
parser.add_argument("--seed", default=1997, type=int)
parser.add_argument("--resume", default="", help="resume from checkpoint")
parser.add_argument("--test_only", action="store_true")
parser.add_argument("--num_workers", default=4, type=int)
parser.add_argument("--pin_mem", action="store_true")
parser.add_argument("--beta_schedule", default="linear", type=str)
parser.add_argument("--test_sample_mult", default=1.1, type=float)
parser.add_argument(
"--augment",
default="",
choices="permute/permute_same/sort_permute",
type=str,
help="augmentation method",
)
parser.add_argument("--augment_amount", default=0.0, type=float)
parser.add_argument("--timesteps", default=500, type=int)
parser.add_argument("--scheduler_step", "-ss", default=100, type=int)
parser.add_argument("--sampling", default="ddim", type=str)
parser.add_argument("--num_points", default=5000, type=int)
parser.add_argument("--mlp_dims", default=128, type=int)
parser.add_argument("--mlp_type", default="mlp", type=str)
parser.add_argument(
"--d_hidden", default=128, type=int, help="number of hidden dims of MLP"
)
parser.add_argument(
"--n_blocks", default=5, type=int, help="number of resnet blocks"
)
parser.add_argument("--n_embed", default=128, type=int)
parser.add_argument("--n_layers", default=4, type=int)
parser.add_argument("--n_heads", default=4, type=int)
parser.add_argument("--condition", default="no", type=str)
parser.add_argument("--split_policy", default="layer_by_layer", type=str)
parser.add_argument("--use_global_residual", action="store_true")
parser.add_argument(
"--model_mean_type",
default="START_X",
type=str,
choices=["START_X", "PREVIOUS_X", "EPSILON"],
)
parser.add_argument(
"--pcd_path",
default="/localscratch/asa409/intra_vessels/INR_PROCESSED_DATA/VASC_INR_occ/messh.ply",
type=str,
help="path of 3D shape as .obj/.ply",
)
parser.add_argument(
"--model_var_type",
default="FIXED_LARGE",
type=str,
choices=["LEARNED", "FIXED_LARGE", "FIXED_SMALL", "LEARNED_RANGE"],
)
parser.add_argument(
"--loss_type",
default="MSE",
type=str,
choices=["MSE", "RESCALED_MSE", "KL", "RESCALED_KL"],
)
args = parser.parse_args()
args.output_dir = Path(args.output_dir)
args.output_dir.mkdir(parents=True, exist_ok=True)
args.log_dir = Path(args.log_dir)
args.log_dir.mkdir(parents=True, exist_ok=True)
args.data_path = Path(args.data_path)
run(args)