-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy patheval.py
53 lines (40 loc) · 1.91 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import time
from utils import *
from datasets import HANDataset
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Data parameters
data_folder = '/media/ssd/han data'
# Evaluation parameters
batch_size = 64 # batch size
workers = 4 # number of workers for loading data in the DataLoader
print_freq = 2000 # print training or validation status every __ batches
checkpoint = 'checkpoint_han.pth.tar'
# Load model
checkpoint = torch.load(checkpoint)
model = checkpoint['model']
model = model.to(device)
model.eval()
# Load test data
test_loader = torch.utils.data.DataLoader(HANDataset(data_folder, 'test'), batch_size=batch_size, shuffle=False,
num_workers=workers, pin_memory=True)
# Track metrics
accs = AverageMeter() # accuracies
# Evaluate in batches
for i, (documents, sentences_per_document, words_per_sentence, labels) in enumerate(
tqdm(test_loader, desc='Evaluating')):
documents = documents.to(device) # (batch_size, sentence_limit, word_limit)
sentences_per_document = sentences_per_document.squeeze(1).to(device) # (batch_size)
words_per_sentence = words_per_sentence.to(device) # (batch_size, sentence_limit)
labels = labels.squeeze(1).to(device) # (batch_size)
# Forward prop.
scores, word_alphas, sentence_alphas = model(documents, sentences_per_document,
words_per_sentence) # (n_documents, n_classes), (n_documents, max_doc_len_in_batch, max_sent_len_in_batch), (n_documents, max_doc_len_in_batch)
# Find accuracy
_, predictions = scores.max(dim=1) # (n_documents)
correct_predictions = torch.eq(predictions, labels).sum().item()
accuracy = correct_predictions / labels.size(0)
# Keep track of metrics
accs.update(accuracy, labels.size(0))
start = time.time()
# Print final result
print('\n * TEST ACCURACY - %.1f per cent\n' % (accs.avg * 100))