forked from explosion/thinc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathschedules.py
131 lines (110 loc) · 3.63 KB
/
schedules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""Generators that provide different rates, schedules, decays or series."""
from typing import Iterable
import numpy
from .config import registry
@registry.schedules("constant_then.v1")
def constant_then(
rate: float, steps: int, schedule: Iterable[float]
) -> Iterable[float]:
"""Yield a constant rate for N steps, before starting a schedule."""
for i in range(steps):
yield rate
for value in schedule:
yield value
@registry.schedules("constant.v1")
def constant(rate: float) -> Iterable[float]:
"""Yield a constant rate."""
while True:
yield rate
@registry.schedules("decaying.v1")
def decaying(base_rate: float, decay: float, *, t: int = 0) -> Iterable[float]:
"""Yield an infinite series of linearly decaying values,
following the schedule: base_rate * 1 / (1 + decay * t)
EXAMPLE:
>>> learn_rates = decaying(0.001, 1e-4)
>>> next(learn_rates)
0.001
>>> next(learn_rates)
0.00999
"""
while True:
yield base_rate * (1.0 / (1.0 + decay * t))
t += 1
@registry.schedules("compounding.v1")
def compounding(
start: float, stop: float, compound: float, *, t: float = 0.0
) -> Iterable[float]:
"""Yield an infinite series of compounding values. Each time the
generator is called, a value is produced by multiplying the previous
value by the compound rate.
EXAMPLE:
>>> sizes = compounding(1.0, 10.0, 1.5)
>>> assert next(sizes) == 1.
>>> assert next(sizes) == 1 * 1.5
>>> assert next(sizes) == 1.5 * 1.5
"""
curr = float(start)
while True:
yield _clip(curr, start, stop)
curr *= compound
def _clip(value: float, start: float, stop: float) -> float:
return max(value, stop) if (start > stop) else min(value, stop)
@registry.schedules("slanted_triangular.v1")
def slanted_triangular(
max_rate: float,
num_steps: int,
*,
cut_frac: float = 0.1,
ratio: int = 32,
decay: float = 1.0,
t: float = 0.0,
) -> Iterable[float]:
"""Yield an infinite series of values according to Howard and Ruder's
"slanted triangular learning rate" schedule.
"""
cut = int(num_steps * cut_frac)
while True:
t += 1
if t < cut:
p = t / cut
else:
p = 1 - ((t - cut) / (cut * (1 / cut_frac - 1)))
learn_rate = max_rate * (1 + p * (ratio - 1)) * (1 / ratio)
yield learn_rate
@registry.schedules("warmup_linear.v1")
def warmup_linear(
initial_rate: float, warmup_steps: int, total_steps: int
) -> Iterable[float]:
"""Generate a series, starting from an initial rate, and then with a warmup
period, and then a linear decline. Used for learning rates.
"""
step = 0
while True:
if step < warmup_steps:
factor = step / max(1, warmup_steps)
else:
factor = max(
0.0, (total_steps - step) / max(1.0, total_steps - warmup_steps)
)
yield factor * initial_rate
step += 1
@registry.schedules("cyclic_triangular.v1")
def cyclic_triangular(min_lr: float, max_lr: float, period: int) -> Iterable[float]:
it = 1
while True:
# https://towardsdatascience.com/adaptive-and-cyclical-learning-rates-using-pytorch-2bf904d18dee
cycle = numpy.floor(1 + it / (2 * period))
x = numpy.abs(it / period - 2 * cycle + 1)
relative = max(0, 1 - x)
yield min_lr + (max_lr - min_lr) * relative
it += 1
__all__ = [
"cyclic_triangular",
"warmup_linear",
"constant",
"constant_then",
"decaying",
"warmup_linear",
"slanted_triangular",
"compounding",
]