forked from GlobalArchiveManual/CheckEM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtesting.R
90 lines (77 loc) · 3.65 KB
/
testing.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
metadata<-read.csv("data/example_metadata.csv")%>%
mutate(sample=as.character(sample))%>%
ga.clean.names()
maxn <- read.delim("data/example_Points.txt")%>%
ga.clean.names()%>%
dplyr::rename(sample=opcode)%>%
dplyr::mutate(number=as.numeric(number))%>%
dplyr::group_by(sample,filename,period,periodtime,frame,family,genus,species,comment)%>%
dplyr::summarise(maxn=sum(number))%>%
dplyr::group_by(sample,family,genus,species)%>%
dplyr::slice(which.max(maxn))%>%
dplyr::ungroup()%>%
dplyr::filter(!is.na(maxn))%>%
dplyr::select(-frame)%>%
tidyr::replace_na(list(maxn=0))%>%
dplyr::mutate(maxn=as.numeric(maxn))%>%
dplyr::filter(maxn>0)%>%
dplyr::inner_join(metadata) %>%
dplyr::filter(successful.count == "Yes") %>%
dplyr::mutate(species = tolower(species)) %>%
dplyr::mutate(genus = ga.capitalise(genus)) %>%
dplyr::mutate(family = ga.capitalise(family))%>%
glimpse()
dat<-maxn%>%
dplyr::select(c(sample,family,genus,species,maxn))%>%
tidyr::complete(nesting(sample),nesting(family,genus,species)) %>%
replace_na(list(maxn = 0))%>%
group_by(sample,family,genus,species)%>%
dplyr::summarise(maxn=sum(maxn))%>%
ungroup()
### Read shapefiles###
marine.regions <- readOGR(dsn="data/spatial/marine_regions.shp")
marine.regions$REGION<-as.character(marine.regions$REGION)
commonwealth.marineparks <- readOGR(dsn="data/spatial/AustraliaNetworkMarineParks.shp")
wa.marineparks <- readOGR(dsn="data/spatial/WA_MPA_2018.shp")
proj4string(marine.regions)<-CRS(wgs.84)
proj4string(commonwealth.marineparks)<-CRS(wgs.84)
proj4string(wa.marineparks)<-CRS(wgs.84)
metadata.coords<-metadata
coordinates(metadata.coords) <- ~ longitude + latitude
proj4string(metadata.coords)<-CRS(wgs.84)
metadata.commonwealth.marineparks <- over(metadata.coords, commonwealth.marineparks)%>%
dplyr::select(ZoneName)
metadata.wa.marineparks <- over(metadata.coords, wa.marineparks)%>%
dplyr::select(ZONE_TYPE)
test<-bind_cols(metadata,metadata.commonwealth.marineparks)%>%
dplyr::select(-c(status))%>%
dplyr::rename(status=ZoneName)%>%
bind_cols(.,metadata.wa.marineparks)%>%
dplyr::mutate(status=ifelse(status%in%c(NA),as.character(ZONE_TYPE),as.character(status)))%>%
dplyr::select(-c(ZONE_TYPE))%>%
dplyr::mutate(status=str_replace_all(.$status,c(" Zone"="","Zone "="","(IUCN II)"="","(IUCN IV)"="","(IUCN IA)"="","[^[:alnum:] ]"=""," Benthic Protection"="","Use "="Use","y "="y")))%>%
dplyr::select(sample,latitude,longitude,status)%>%
dplyr::mutate(status=as.factor(status))%>%
dplyr::mutate(status.simple=str_replace_all(.$status,c("General Use"="Fished",
"Recreational Use"="Fished",
"Multiple Use"="Fished",
"National Park"="No-take",
"Sanctuary"="No-take",
"Special Purpose "="Fished")))%>%
glimpse()
unique(test$status.simple)
test2$status <- fct_collapse(test$status,
fished=c("General Use","Recreational Use","Multiple Use"),
notake=c("National Park","Sanctuary"))
fct_count(test$status)
fct_count(test2)
## Set up container for results
n <- length(metadata.coords)
nearest.region <- character(n)
marine.regions$REGION<-as.character(marine.regions$REGION)
## For each point, find name of nearest polygon (in this case, Belgian cantons)
for (i in seq_along(nearest.region)) {
nearest.region[i] <- marine.regions$REGION[which.min(gDistance(metadata.coords[i,], marine.regions, byid=TRUE))]
}
nearest.region
unique(marine.regions$REGION)