-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathgenerator.py
327 lines (277 loc) · 12.3 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import h5py
import os
import argparse
import numpy as np
from cv2 import resize, INTER_AREA
from tqdm import tqdm
from vizdoom_env import Vizdoom_env
from dsl.dsl_parse import parse as vizdoom_parse
from dsl.random_code_generator import DoomProgramGenerator
from dsl.vocab import VizDoomDSLVocab
from util import log
class DoomStateGenerator(object):
def __init__(self, seed=None):
self.rng = np.random.RandomState(seed)
self.x_max = 64
self.x_min = -480
self.y_max = 480
self.y_min = 64
def gen_rand_pos(self):
return [self.rng.randint(self.x_min, self.x_max),
self.rng.randint(self.y_min, self.y_max)]
def get_pos_keys(self):
return ['player_pos', 'demon_pos', 'hellknight_pos',
'revenant_pos', 'ammo_pos']
# generate an initial env
def generate_initial_state(self, min_ammo=4, max_ammo=5,
min_monster=4, max_monster=5):
""" h is y, w is x
s = [{"player_pos": [x, y], "monster_pos": [[x1, y1], [x2, y2]]}]
"""
s = {}
locs = []
s["player_pos"] = self.gen_rand_pos()
s["demon_pos"] = []
s["hellknight_pos"] = []
s["revenant_pos"] = []
s["ammo_pos"] = []
locs.append(s["player_pos"])
ammo_count = self.rng.randint(min_ammo, max_ammo + 1)
demon_count = self.rng.randint(min_monster, max_monster + 1)
hellknight_count = self.rng.randint(min_monster, max_monster + 1)
revenant_count = self.rng.randint(min_monster, max_monster + 1)
while(revenant_count > 0):
new_pos = self.gen_rand_pos()
if new_pos not in locs:
s["revenant_pos"].append(new_pos)
locs.append(new_pos)
revenant_count -= 1
while(hellknight_count > 0):
new_pos = self.gen_rand_pos()
if new_pos not in locs:
s["hellknight_pos"].append(new_pos)
locs.append(new_pos)
hellknight_count -= 1
while(demon_count > 0):
new_pos = self.gen_rand_pos()
if new_pos not in locs:
s["demon_pos"].append(new_pos)
locs.append(new_pos)
demon_count -= 1
while(ammo_count > 0):
new_pos = self.gen_rand_pos()
if new_pos not in locs:
s["ammo_pos"].append(new_pos)
locs.append(new_pos)
ammo_count -= 1
return s
def downsize(img, h=80, w=80):
image_resize = resize(img, (h, w), interpolation=INTER_AREA)
return image_resize
def generator(config):
dir_name = config.dir_name
image_dir = os.path.join(dir_name, 'images')
check_path(image_dir)
num_train = config.num_train
num_test = config.num_test
num_val = config.num_val
num_total = num_train + num_test + num_val
# output files
f = h5py.File(os.path.join(dir_name, 'data.hdf5'), 'w')
id_file = open(os.path.join(dir_name, 'id.txt'), 'w')
num_demo = config.num_demo_per_program + config.num_test_demo_per_program
world_list = []
log.info('Initializing {} vizdoom environments...'.format(num_demo))
for _ in range(num_demo):
log.info('[{}/{}]'.format(_, num_demo))
world = Vizdoom_env(config="vizdoom_env/asset/default.cfg",
perception_type='simple')
world.init_game()
world_list.append(world)
log.info('done')
h = config.height
w = config.width
c = world_list[0].channel
gen = DoomStateGenerator(seed=config.seed)
prog_gen = DoomProgramGenerator(seed=config.seed)
percepts = world_list[0].get_perception_vector_cond()
vizdoom_vocab = VizDoomDSLVocab(
perception_type='simple')
count = 0
max_demo_length_in_dataset = -1
max_program_length_in_dataset = -1
pos_keys = gen.get_pos_keys()
max_init_poslen = -1
pbar = tqdm(total=num_total)
while True:
init_states = []
for world in world_list:
init_states.append(gen.generate_initial_state())
world.new_episode(init_states[-1])
program, gen_success = prog_gen.random_code(
percepts, world_list[:config.num_demo_per_program])
if not gen_success:
continue
if len(program.split()) > config.max_program_length:
continue
program_seq = np.array(vizdoom_vocab.str2intseq(program), dtype=np.int8)
exe, compile_success = vizdoom_parse(program)
if not compile_success:
print('compile failure')
print('program: {}'.format(program))
raise RuntimeError('Program compile failure should not happen')
all_success = True
for k, world in enumerate(world_list[config.num_demo_per_program:]):
idx = k + config.num_demo_per_program
world.new_episode(init_states[idx])
new_w, num_call, success = exe(world, 0)
if not success or len(world.s_h) < config.min_demo_length \
or len(world.s_h) > config.max_demo_length:
all_success = False
break
if not all_success: continue
s_h_len_fail = False
for world in world_list:
if len(world.s_h) < config.min_demo_length or \
len(world.s_h) > config.max_demo_length:
s_h_len_fail = True
if s_h_len_fail: continue
program_seq = np.array(vizdoom_vocab.str2intseq(program), dtype=np.int8)
s_h_list = []
a_h_list = []
p_v_h_list = []
for k, world in enumerate(world_list):
s_h_list.append(np.stack(world.s_h, axis=0).copy())
a_h_list.append(np.array(
vizdoom_vocab.action_strlist2intseq(world.a_h)))
p_v_h_list.append(np.stack(world.p_v_h, axis=0).copy())
len_s_h = np.array([s_h.shape[0] for s_h in s_h_list], dtype=np.int16)
demos_s_h = np.zeros([num_demo, np.max(len_s_h), h, w, c], dtype=np.int16)
for i, s_h in enumerate(s_h_list):
downsize_s_h = []
for t, s in enumerate(s_h):
if s.shape[0] != h or s.shape[1] != w:
s = downsize(s, h, w)
downsize_s_h.append(s.copy())
demos_s_h[i, :s_h.shape[0]] = np.stack(downsize_s_h, 0)
len_a_h = np.array([a_h.shape[0] for a_h in a_h_list], dtype=np.int16)
demos_a_h = np.zeros([num_demo, np.max(len_a_h)], dtype=np.int8)
for i, a_h in enumerate(a_h_list):
demos_a_h[i, :a_h.shape[0]] = a_h
demos_p_v_h = np.zeros([num_demo, np.max(len_s_h), len(percepts)], dtype=np.bool)
for i, p_v in enumerate(p_v_h_list):
demos_p_v_h[i, :p_v.shape[0]] = p_v
max_demo_length_in_dataset = max(
max_demo_length_in_dataset, np.max(len_s_h))
max_program_length_in_dataset = max(
max_program_length_in_dataset, program_seq.shape[0])
# save the state
id = 'no_{}_prog_len_{}_max_s_h_len_{}'.format(
count, program_seq.shape[0], np.max(len_s_h))
id_file.write(id+'\n')
# data: [# demo, # pos_key, max(# pos), 2]
# len: [# demo, #pos_key]
np_init_states = {}
np_init_state_len = {}
pos_key_maxlen = -1
for k in pos_keys:
np_init_states[k] = []
np_init_state_len[k] = []
for s in init_states:
np_pos = np.array(s[k], dtype=np.int32)
if np_pos.ndim == 1:
np_pos = np.expand_dims(np_pos, axis=0)
np_init_states[k].append(np_pos)
np_init_state_len[k].append(np_pos.shape[0])
pos_key_maxlen = max(pos_key_maxlen, np_pos.shape[0])
max_init_poslen = max(max_init_poslen, pos_key_maxlen)
# 3rd dimension is 2 as they are positions
np_merged_init_states = np.zeros([num_demo, len(pos_keys),
pos_key_maxlen, 2],
dtype=np.int32)
merged_pos_len = []
for p, key in enumerate(pos_keys):
single_key_pos_len = []
for k, state in enumerate(np_init_states[key]):
np_merged_init_states[k, p, :state.shape[0]] = state
single_key_pos_len.append(state.shape[0])
merged_pos_len.append(np.array(single_key_pos_len, dtype=np.int32))
np_merged_pos_len = np.stack(merged_pos_len, axis=1)
grp = f.create_group(id)
grp['program'] = program_seq
grp['s_h_len'] = len_s_h[:config.num_demo_per_program]
grp['s_h'] = demos_s_h[:config.num_demo_per_program]
grp['a_h_len'] = len_a_h[:config.num_demo_per_program]
grp['a_h'] = demos_a_h[:config.num_demo_per_program]
grp['p_v_h'] = demos_p_v_h[:config.num_demo_per_program]
grp['test_s_h_len'] = len_s_h[config.num_demo_per_program:]
grp['test_s_h'] = demos_s_h[config.num_demo_per_program:]
grp['test_a_h_len'] = len_a_h[config.num_demo_per_program:]
grp['test_a_h'] = demos_a_h[config.num_demo_per_program:]
grp['test_p_v_h'] = demos_p_v_h[config.num_demo_per_program:]
grp['vizdoom_init_pos'] = \
np_merged_init_states[:config.num_demo_per_program]
grp['vizdoom_init_pos_len'] = \
np_merged_pos_len[:config.num_demo_per_program]
grp['test_vizdoom_init_pos'] = \
np_merged_init_states[config.num_demo_per_program:]
grp['test_vizdoom_init_pos_len'] = \
np_merged_pos_len[config.num_demo_per_program:]
count += 1
pbar.update(1)
if count >= num_total:
grp = f.create_group('data_info')
grp['max_demo_length'] = max_demo_length_in_dataset
grp['max_program_length'] = max_program_length_in_dataset
grp['num_program_tokens'] = len(vizdoom_vocab.int2token)
grp['num_demo_per_program'] = config.num_demo_per_program
grp['num_test_demo_per_program'] = config.num_test_demo_per_program
grp['num_action_tokens'] = len(vizdoom_vocab.action_int2token)
grp['num_train'] = config.num_train
grp['num_test'] = config.num_test
grp['num_val'] = config.num_val
grp['s_h_h'] = h
grp['s_h_w'] = w
grp['s_h_c'] = c
grp['percepts'] = percepts
grp['vizdoom_pos_keys'] = pos_keys
grp['vizdoom_max_init_pos_len'] = max_init_poslen
grp['perception_type'] = 'simple'
f.close()
id_file.close()
print('Dataset generated under {} with {}'
' samples ({} for training and {} for testing '
'and {} for val'.format(dir_name, num_total,
num_train, num_test, num_val))
pbar.close()
return
def check_path(path):
if not os.path.exists(path):
os.makedirs(path)
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dir_name', type=str, default='vizdoom_small', help=' ')
parser.add_argument('--num_train', type=int, default=10000, help=' ')
parser.add_argument('--num_test', type=int, default=1000, help=' ')
parser.add_argument('--num_val', type=int, default=100, help=' ')
parser.add_argument('--seed', type=int, default=123, help=' ')
parser.add_argument('--max_program_length', type=int, default=32)
parser.add_argument('--min_demo_length', type=int, default=2)
parser.add_argument('--max_demo_length', type=int, default=8, help=' ')
parser.add_argument('--num_demo_per_program', type=int, default=40, help=' ')
parser.add_argument('--num_test_demo_per_program', type=int, default=10, help=' ')
parser.add_argument('--width', type=int, default=80)
parser.add_argument('--height', type=int, default=80)
args = parser.parse_args()
args.dir_name += '_len{}_seed{}'.format(
args.max_demo_length, args.seed)
args.dir_name = os.path.join('datasets/', args.dir_name)
check_path('datasets')
check_path(args.dir_name)
generator(args)
if __name__ == '__main__':
main()