-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsum_of_divisor.cpp
62 lines (52 loc) · 1.37 KB
/
sum_of_divisor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/*
@author : Amirul Islam (shiningflash)
@date : July 13, 2020 Monday
@topic : Sum of Divisor (Number Theory)
@hints :
*
* for 81, sum of divisor = 1 + 3 + 9 + 27 + 81 = 121
* efficient way: sigma(3^4) = (3^(4+1)) / (3-1) = 242 / 2 = 121
*
* N = p1^e1 x p2^e2 x p3^e3 x ...... x pn^en
* D(N) = ( ((p1^(e1+1) - 1) / (p1-1)) x ((p2^(e2+1) - 1) / (p2-1)) x ....... x ((pn^(en+1) - 1) / (pn-1))
*/
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5;
bool a[N];
int prime[N];
int sieve() {
int ind = 0, sq = sqrt(N) + 1;
for (int i = 2; i < sq; i++) {
if (a[i] == 0) {
for (int j = 2*i; j < N; j += i) a[j] = 1;
}
}
for (int i = 2; i < N; i++) if (a[i] == 0) prime[ind++] = i;
return ind;
}
int sumOfDivisor(int n) {
int sum = 1, sq = sqrt(n) + 1;
for (int i = 0; prime[i] < sq; i++) {
if (n % prime[i] == 0) {
int p = 1;
while (n % prime[i] == 0) {
n /= prime[i];
p *= prime[i];
}
p *= prime[i];
sum *= ((p - 1) / (prime[i] - 1));
}
}
if (n > 1) {
int p = n * n;
sum *= ((p - 1) / (n - 1));
}
return sum;
}
int main() {
// freopen("in", "r", stdin);
sieve();
int n;
while (cin >> n) cout << sumOfDivisor(n) << endl;
}