-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEdge_Detection.py
294 lines (216 loc) · 11.1 KB
/
Edge_Detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import numpy as np
import math
import matplotlib.pyplot as plt
# input image
filename = '/Users/shivani/Downloads/downloads/test3.img'
output = '/Users/shivani/Downloads/outputCV.img'
output1 = '/Users/shivani/Downloads/BTimg.img'
with open(filename , 'rb') as in_file:
with open(output, 'wb') as out_file:
out_file.write(in_file.read()[512:]) # image header to remove size is known for the image
fo = open(output, 'rb')
Output512 = np.fromfile(output, dtype='uint8', sep="")
Output512 = Output512.reshape([512, 512]) # size is known for the image
with open(output , 'rb') as out_file1:
myArr = bytearray(out_file1.read())
img = np.copy(Output512)
plt.imshow(img,cmap='gray')
plt.show()
# define sigma and other parameters
def parametersForFilter(sigma):
# define the size of the filter
size = int(2 * (np.ceil(4 * sigma)) + 1)
# define the values in the filter
x, y = np.meshgrid(np.arange(-size / 2 + 1, size / 2 + 1), np.arange(-size / 2 + 1, size / 2 + 1))
# normalize the filter values
normalize = 1 / (2.0 * np.pi * sigma ** 2)
# LoG filter
LOGfilter = ((x ** 2 + y ** 2 - (2.0 * sigma ** 2)) / sigma ** 4) * np.exp(
-(x ** 2 + y ** 2) / (2.0 * sigma ** 2)) / normalize
# filter size
filter_size= LOGfilter.shape[0]
return LOGfilter, filter_size
sigma = 5
LOGfilter , filter_size = parametersForFilter(sigma)
# add padding of zeroes to the image as per sigma
padding = math.floor(filter_size/2)
newImage = np.zeros(shape=(img.shape[0] + 2* padding, img.shape[1] + 2 * padding))
for i in range(0,newImage.shape[0],1):
for j in range(0,newImage.shape[1],1):
if i <= padding or j <= padding :
continue
else:
if i - padding < 512 and j - padding < 512:
newImage[i][j] = img[i - padding][j - padding]
logarr = np.zeros_like(newImage, dtype=float)
# apply filter
for i in range(newImage.shape[0]-(filter_size - 1)):
for j in range(newImage.shape[1]-(filter_size - 1)):
if i + filter_size < 512 and j + filter_size < 512:
window = newImage[i: i + filter_size, j:j + filter_size] * LOGfilter
logarr[i + padding, j + padding] = np.sum(window)
logarr = logarr.astype(np.int64, copy=False)
zero_crossing = np.zeros_like(logarr)
#find zero crossings
for i in range(logarr.shape[0]):
for j in range(logarr.shape[1]):
if logarr[i][j] == 0:
# to check for vertical or horizontal
if (logarr[i][j - 1] < 0 and logarr[i][j + 1] > 0) or (logarr[i][j - 1] < 0 and logarr[i][j + 1] < 0) or (
logarr[i - 1][j] < 0 and logarr[i + 1][j] > 0) or (logarr[i - 1][j] > 0 and logarr[i + 1][j] < 0):
zero_crossing[i][j] = 255
if logarr[i][j] < 0:
if (logarr[i][j - 1] > 0) or (logarr[i][j + 1] > 0) or (logarr[i - 1][j] > 0) or (logarr[i + 1][j] > 0):
zero_crossing[i][j] = 255
# for sigma - delta sigma 5-0.5 = 4.5
# zero_crossing have the edge map for previous sigma
# newImage have the padded image data to refer for zero crossings
# convolve around the pixel and 8-neighbor whose value is 255 in edge map
# fuction to convolve image with given edgemap
def convolveImage(zero_crossing,padding,filter_size_4_5,LOGfilter4_5,logArr4_5,newImage):
for i in range(zero_crossing.shape[0]):
for j in range(zero_crossing.shape[1]):
if zero_crossing[i][j] == 255 and (i + filter_size_4_5) < zero_crossing.shape[0] and (j + filter_size_4_5) \
< zero_crossing.shape[1] and (i + padding) < zero_crossing.shape[0] and (j + padding) < zero_crossing.shape[1]:
# convolve around the same pixel in the original image and its 8-neighbors
window = newImage[i: i + filter_size_4_5, j:j + filter_size_4_5] * LOGfilter4_5
logArr4_5[i + padding, j + padding] = np.sum(window)
# 8-neighbors
# i-1 ; j-1
window = newImage[i-1: i-1 + filter_size_4_5, j-1:j-1 + filter_size_4_5] * LOGfilter4_5
logArr4_5[i-1 + padding, j-1 + padding] = np.sum(window)
# i-1 ; j
window = newImage[i - 1: i - 1 + filter_size_4_5, j:j + filter_size_4_5] * LOGfilter4_5
logArr4_5[i - 1 + padding, j + padding] = np.sum(window)
# i-1 ; j+1
window = newImage[i - 1: i - 1 + filter_size_4_5, j + 1:j + 1 + filter_size_4_5] * LOGfilter4_5
logArr4_5[i - 1 + padding, j + 1 + padding] = np.sum(window)
# i ; j-1
window = newImage[i : i + filter_size_4_5, j - 1:j - 1 + filter_size_4_5] * LOGfilter4_5
logArr4_5[i + padding, j - 1 + padding] = np.sum(window)
# i-1 ; j+1
window = newImage[i - 1: i - 1 + filter_size_4_5, j + 1:j + 1 + filter_size_4_5] * LOGfilter4_5
logArr4_5[i - 1 + padding, j + 1 + padding] = np.sum(window)
# i+1 ; j-1
window = newImage[i + 1: i + 1 + filter_size_4_5, j - 1:j - 1 + filter_size_4_5] * LOGfilter4_5
logArr4_5[i + 1 + padding, j - 1 + padding] = np.sum(window)
# i+1 ; j
window = newImage[i + 1: i + 1 + filter_size_4_5, j:j + filter_size_4_5] * LOGfilter4_5
logArr4_5[i + 1 + padding, j + padding] = np.sum(window)
# i+1 ; j+1
window = newImage[i + 1: i + 1 + filter_size_4_5, j + 1:j + 1 + filter_size_4_5] * LOGfilter4_5
logArr4_5[i + 1 + padding, j + 1 + padding] = np.sum(window)
logArr4_5 = logArr4_5.astype(np.int64, copy=False)
zero_crossing_4_5 = np.zeros_like(logArr4_5)
#find zero crossings
for i in range(logArr4_5.shape[0]):# - (filter_size - 1)):
for j in range(logArr4_5.shape[1]):#- (filter_size - 1)):
if logArr4_5[i][j] == 0:
# to check for vertical or horizontal
if (logArr4_5[i][j - 1] < 0 and logArr4_5[i][j + 1] > 0) or (logArr4_5[i][j - 1] < 0 and logArr4_5[i][j + 1] < 0) or (
logArr4_5[i - 1][j] < 0 and logArr4_5[i + 1][j] > 0) or (logArr4_5[i - 1][j] > 0 and logArr4_5[i + 1][j] < 0):
zero_crossing_4_5[i][j] = 255
if logArr4_5[i][j] < 0:
if (logArr4_5[i][j - 1] > 0) or (logArr4_5[i][j + 1] > 0) or (logArr4_5[i - 1][j] > 0) or (logArr4_5[i + 1][j] > 0):
zero_crossing_4_5[i][j] = 255
return zero_crossing_4_5
#plot the image
def plotedges(zero_crossing,sigma):
fig = plt.figure()
a = fig.add_subplot(1, 1, 1)
imgplot = plt.imshow(zero_crossing, cmap='gray')
string = '\u03C3 = '
string += (str(sigma))
a.set_title(string)
plt.show()
sigma = 4.5
LOGfilter4_5, filter_size_4_5 = parametersForFilter(sigma)
logArr4_5 = np.zeros_like(newImage, dtype=float)
zero_crossing_4_5 = convolveImage(zero_crossing,padding,filter_size_4_5,LOGfilter4_5,logArr4_5,newImage)
sigma = 4
LOGfilter4, filter_size_4 = parametersForFilter(sigma)
logArr4 = np.zeros_like(newImage, dtype=float)
zero_crossing_4 = convolveImage(zero_crossing_4_5,padding,filter_size_4,LOGfilter4,logArr4,newImage)
sigma = 3.5
LOGfilter3_5, filter_size_3_5 = parametersForFilter(sigma)
logArr3_5 = np.zeros_like(newImage, dtype=float)
zero_crossing_3_5 = convolveImage(zero_crossing_4,padding,filter_size_3_5,LOGfilter3_5,logArr3_5,newImage)
sigma = 3
LOGfilter3, filter_size_3 = parametersForFilter(sigma)
logArr3 = np.zeros_like(newImage, dtype=float)
zero_crossing_3 = convolveImage(zero_crossing_3_5,padding,filter_size_3,LOGfilter3,logArr3,newImage)
sigma = 2.5
LOGfilter2_5, filter_size_2_5 = parametersForFilter(sigma)
logArr2_5 = np.zeros_like(newImage, dtype=float)
zero_crossing_2_5 = convolveImage(zero_crossing_3,padding,filter_size_2_5,LOGfilter2_5,logArr2_5,newImage)
sigma = 2
LOGfilter2, filter_size_2 = parametersForFilter(sigma)
logArr2 = np.zeros_like(newImage, dtype=float)
zero_crossing_2 = convolveImage(zero_crossing_2_5,padding,filter_size_2,LOGfilter2,logArr2,newImage)
sigma = 1.5
LOGfilter1_5, filter_size_1_5 = parametersForFilter(sigma)
logArr1_5 = np.zeros_like(newImage, dtype=float)
zero_crossing_1_5 = convolveImage(zero_crossing_2,padding,filter_size_1_5,LOGfilter1_5,logArr1_5,newImage)
sigma = 1
LOGfilter1, filter_size_1 = parametersForFilter(sigma)
logArr1 = np.zeros_like(newImage, dtype=float)
zero_crossing_1 = convolveImage(zero_crossing_1_5,padding,filter_size_1,LOGfilter1,logArr1,newImage)
sigma = 0.5
LOGfilter0_5, filter_size_0_5 = parametersForFilter(sigma)
logArr0_5 = np.zeros_like(newImage, dtype=float)
zero_crossing_0_5 = convolveImage(zero_crossing_1,padding,filter_size_0_5,LOGfilter0_5,logArr0_5,newImage)
# sigma = 5
newcross = zero_crossing
for i in range(newcross.shape[0]):
for j in range(newcross.shape[1]):
if newcross[i][j] != 0 :
newcross[i][j] = 255
newcross1 = np.zeros(shape=(512,512))
for i in range(newcross1.shape[0]):
for j in range(newcross1.shape[1]):
newcross1[i][j] = newcross[i + padding][j + padding]
plotedges(newcross1,5)
# sigma = 4
newcross = zero_crossing + zero_crossing_4_5 + zero_crossing_4
for i in range(newcross.shape[0]):
for j in range(newcross.shape[1]):
if newcross[i][j] != 0 :
newcross[i][j] = 255
newcross1 = np.zeros(shape=(512,512))
for i in range(newcross1.shape[0]):
for j in range(newcross1.shape[1]):
newcross1[i][j] = newcross[i + padding][j + padding]
plotedges(newcross1,4)
# sigma = 3
newcross = zero_crossing + zero_crossing_4 + zero_crossing_4_5 + zero_crossing_3_5 + zero_crossing_3
for i in range(newcross.shape[0]):
for j in range(newcross.shape[1]):
if newcross[i][j] != 0 :
newcross[i][j] = 255
newcross1 = np.zeros(shape=(512,512))
for i in range(newcross1.shape[0]):
for j in range(newcross1.shape[1]):
newcross1[i][j] = newcross[i + padding][j + padding]
plotedges(newcross1,3)
# sigma = 2
newcross = zero_crossing + zero_crossing_4 + zero_crossing_4_5 + zero_crossing_3_5 + zero_crossing_3 + zero_crossing_2_5 + zero_crossing_2
for i in range(newcross.shape[0]):
for j in range(newcross.shape[1]):
if newcross[i][j] != 0 :
newcross[i][j] = 255
newcross1 = np.zeros(shape=(512,512))
for i in range(newcross1.shape[0]):
for j in range(newcross1.shape[1]):
newcross1[i][j] = newcross[i + padding][j + padding]
plotedges(newcross1,2)
# sigma = 1
newcross = zero_crossing + zero_crossing_4 + zero_crossing_4_5 + zero_crossing_3_5 + zero_crossing_3 + zero_crossing_2_5 + zero_crossing_2 + zero_crossing_1_5 + zero_crossing_1
for i in range(newcross.shape[0]):
for j in range(newcross.shape[1]):
if newcross[i][j] != 0 :
newcross[i][j] = 255
newcross1 = np.zeros(shape=(512,512))
for i in range(newcross1.shape[0]):
for j in range(newcross1.shape[1]):
newcross1[i][j] = newcross[i + padding][j + padding]
plotedges(newcross1,1)