-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
222 lines (201 loc) · 6.64 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import gym
import torch
import numpy as np
import random
from pois import method_factory
from stable_baselines3 import PPO
from sb3_contrib import TRPO
import matplotlib.pyplot as plt
from time import time
from tqdm import tqdm
from stable_baselines3.common.evaluation import evaluate_policy
import pandas as pd
from stable_baselines3.common.callbacks import BaseCallback
"""
TODO:
Add a callback to the train_kwargs of each method to record the episode returns.
for APOIS and PPOIS
Both of these methods have a num_iterations parameter.
We should also support a tensorboard logging of the returns.
Ideally, we should have the same interface for all the methods.
"""
methods_to_evaluate = ['a-pois']
class EpisodeReturnCallback(BaseCallback):
def __init__(self, verbose=0):
super().__init__(verbose)
self.episode_returns = []
self.current_episode_return = 0
def _on_step(self) -> bool:
self.current_episode_return += self.locals["rewards"][0]
if self.locals["dones"][0]:
self.episode_returns.append(self.current_episode_return)
self.logger.record("episode_return", self.current_episode_return)
self.current_episode_return = 0
return True
method_factory["trpo"] = TRPO
method_factory["ppo"] = PPO
evaluate_config = {
"linear": {
"seeds": [10, 109, 904, 160, 570],
"method":{
"p-pois": {
"init_kwargs": {
"policy": "linear"
},
"train_kwargs": {
"num_offline_iterations": 10,
"num_iterations": 50,
"episodes_per_iteration": 10
}
},
"a-pois": {
"init_kwargs": {
"policy": "linear"
},
"train_kwargs": {
"num_offline_iterations": 10,
"num_iterations": 50,
"episodes_per_iteration": 10
}
},
"trpo": {
"init_kwargs": {
"policy": "MlpPolicy",
"policy_kwargs": {
"net_arch": []
}
},
"train_kwargs": {
"total_timesteps": 500,
"callback": EpisodeReturnCallback()
}
},
"ppo": {
"init_kwargs": {
"policy": "MlpPolicy",
"policy_kwargs": {
"net_arch": []
},
},
"train_kwargs": {
"total_timesteps": 500,
"callback": EpisodeReturnCallback(),
}
}
}
},
"mlp": {
"seeds": [10, 109, 904, 160, 570],
"method":{
"p-pois": {
"init_kwargs": {
"policy": "mlp",
},
"train_kwargs": {
"num_offline_iterations": 20,
"num_iterations": 50,
"episodes_per_iteration": 10
}
},
"a-pois": {
"init_kwargs": {
"policy": "mlp",
},
"train_kwargs": {
"num_offline_iterations": 20,
"num_iterations": 50,
"episodes_per_iteration": 10
}
},
"trpo": {
"init_kwargs": {
"policy": "MlpPolicy",
"policy_kwargs": {
"net_arch": [100, 50, 25]
}
},
"train_kwargs": {
"total_timesteps": 500,
"callback": EpisodeReturnCallback(),
}
},
"ppo": {
"init_kwargs": {
"policy": "MlpPolicy",
"policy_kwargs": {
"net_arch": [100, 50, 25]
},
},
"train_kwargs": {
"total_timesteps": 500,
"callback": EpisodeReturnCallback(),
}
}
}
}
}
env_config = {
"CartPole-v1": {
"delta":{
"p-pois":
{"lambda_coef": 0.4},
"a-pois":
{"lambda_coef": 0.4},
"trpo":
{"learning_rate": 0.1},
"ppo":
{"learning_rate": 0.01}
}
}
}
returns = {}
# running this for cartpole-v1
deltas = env_config["CartPole-v1"]["delta"]
for model_type, config in evaluate_config.items():
returns[model_type] = {}
for method_name in methods_to_evaluate:
print(f"Running {method_name} for {model_type}")
method_config = config["method"][method_name]
avg_returns = []
for seed in tqdm(config["seeds"]):
# set seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
env = gym.make("CartPole-v1")
init_kwargs = method_config["init_kwargs"]
additional_kwargs = deltas[method_name]
if method_name == "trpo" or method_name == "ppo":
model = method_factory[method_name](env=env, seed=seed,
**init_kwargs, **additional_kwargs)
model.learn(**method_config["train_kwargs"])
else:
model = method_factory[method_name](env=env,
**init_kwargs, **additional_kwargs)
return_vals = model.learn(**method_config["train_kwargs"])
mean_return, std_return = evaluate_policy(model, env, n_eval_episodes=5)
print(mean_return, std_return)
avg_returns.append(mean_return)
returns[model_type][method_name] = (np.mean(avg_returns, axis=0),
np.std(avg_returns, axis=0))
# plot the results of returns
# Plotting results
# create a dataframe to store the results
model_types = []
algorithms = []
means = []
stds = []
for model_type, methods in returns.items():
for method_name, (mean, std) in methods.items():
model_types.append(model_type)
algorithms.append(method_name)
means.append(mean)
stds.append(std)
df = pd.DataFrame({
'Model Type': model_types,
'Algorithm': algorithms,
'Mean Return': means,
'Std Return': stds
})
print(df)
df.to_csv("returns_pois.csv", index=False)