-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtools_cmb.py
executable file
·553 lines (392 loc) · 20.1 KB
/
tools_cmb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
# map -> alm
import numpy as np
import healpy as hp
import pickle
import os
import sys
import tqdm
# from SO pipeline
from mapsims import SONoiseSimulator
from mapsims import SOStandalonePrecomputedCMB
from mapsims import SOChannel
from mapsims import noise
# from cmblensplus/wrap/
import curvedsky as CS
# from cmblensplus/utils/
import constant as constants
import cmb
import misctools
# local
import prjlib
class sim_map:
def __init__(self,doreal=False,telescope='la',ntype='base',freq='145',snmin=0,snmax=100,overwrite=False,verbose=True):
self.telescope = str.upper(telescope)
self.ntype = ntype
self.band = int(freq)
self.doreal = doreal
self.rlz = np.linspace(snmin,snmax,snmax-snmin+1,dtype=np.int)
self.overwrite = overwrite
self.verbose = verbose
if 'base' in ntype:
self.mode = 'baseline'
elif 'goal' in ntype:
self.mode = 'goal'
elif ntype == '':
self.mode = 'signal'
print('signal calculation')
else:
sys.exit('unknown noise level')
if 'roll' in ntype:
self.roll = int(ntype[ntype.find('roll')+4:])
else:
self.roll = 0
self.nside, self.npix = prjlib.mapres(telescope)
# set directory
d = prjlib.data_directory()
d_map = d['cmb'] + 'map/'
# map filename
ids = prjlib.rlz_index(doreal=doreal)
if ntype == '':
#cmb signal map
if telescope == 'id': # use LAT signal sim
self.fmap = [d_map+'/cmb_uKCMB_la145_nside'+str(self.nside)+'_'+x+'.fits' for x in ids]
else:
self.fmap = [d_map+'/cmb_uKCMB_'+telescope+freq+'_nside'+str(self.nside)+'_'+x+'.fits' for x in ids]
else:
#cmb noise map
self.fmap = [d_map+'/noise_uKCMB_'+telescope+freq+'_'+ntype+'_nside'+str(self.nside)+'_'+x+'.fits' for x in ids]
def SOsim(self):
# Simulate CMB and noise maps
ch = SOChannel(self.telescope,self.band)
print(ch.center_frequency.value)
if self.verbose: print(self.mode,self.roll)
for i in tqdm.tqdm(self.rlz,ncols=100,desc='generate map'):
if misctools.check_path(self.fmap[i],overwrite=self.overwrite,verbose=self.verbose): continue
if self.verbose: misctools.progress(i,self.rlz,addtext='sim map for '+self.mode)
if self.ntype == '':
# signal simulation
sim = SOStandalonePrecomputedCMB(i,nside=self.nside,input_units='uK_CMB')
map = SOStandalonePrecomputedCMB.simulate(sim,ch)
else:
# noise simulation
sim = SONoiseSimulator(telescopes=[self.telescope],nside=self.nside,apply_beam_correction=False,sensitivity_mode=self.mode,rolloff_ell=self.roll)
map = SONoiseSimulator.simulate(sim,ch)
# save to file
hp.fitsfunc.write_map(self.fmap[i],map,overwrite=True)
def output_hitmap(**kwargs_ov):
for telescope in ['LA','SA']:
nside, __ = prjlib.mapres(telescope)
f = prjlib.hitmap_filename(telescope,nside)
if misctools.check_path(f,**kwargs_ov): continue
s = noise.SONoiseSimulator(nside) # Override hitmap here
w = s.hitmap[telescope]
hp.fitsfunc.write_map(f,w,overwrite=kwargs_ov['overwrite'])
def map2alm_core(nside,lmax,fmap,w,bl):
Tcmb = constants.Tcmb
# load map
Tmap = w * hp.fitsfunc.read_map(fmap,field=0,verbose=False)/Tcmb
Qmap = w * hp.fitsfunc.read_map(fmap,field=1,verbose=False)/Tcmb
Umap = w * hp.fitsfunc.read_map(fmap,field=2,verbose=False)/Tcmb
# map to alm
alm = {}
alm['T'] = CS.utils.hp_map2alm(nside,lmax,lmax,Tmap)
alm['E'], alm['B'] = CS.utils.hp_map2alm_spin(nside,lmax,lmax,2,Qmap,Umap)
# beam deconvolution
for m in constants.mtype:
alm[m] /= bl[:,None]
return alm
def map2alm(t,rlz,freq,nside,lmax,fcmb,w,verbose=True,overwrite=False,mtype=['T','E','B'],roll=2):
# beam
bl = prjlib.get_beam(t,freq,lmax)
# map -> alm
for i in tqdm.tqdm(rlz,ncols=100,desc='map2alm (freq='+freq+')'):
if not overwrite and os.path.exists(fcmb.alms['o']['T'][i]) and os.path.exists(fcmb.alms['o']['E'][i]) and os.path.exists(fcmb.alms['o']['B'][i]):
if verbose: print('Files exist:',fcmb.alms['o']['T'][i],'and E/B')
continue
salm = map2alm_core(nside,lmax,fcmb.lcdm[i],w,bl)
if t == 'id':
oalm = salm.copy()
else:
nalm = map2alm_core(nside,lmax,fcmb.nois[i],w,bl)
oalm = {}
for m in mtype:
oalm[m] = salm[m] + nalm[m]
# remove low-ell for roll-off effect
if roll > 2:
oalm[m][:roll,:] = 0.
# save to files
for m in mtype:
pickle.dump((oalm[m]),open(fcmb.alms['o'][m][i],"wb"),protocol=pickle.HIGHEST_PROTOCOL)
if t != 'id':
pickle.dump((salm[m]),open(fcmb.alms['s'][m][i],"wb"),protocol=pickle.HIGHEST_PROTOCOL)
pickle.dump((nalm[m]),open(fcmb.alms['n'][m][i],"wb"),protocol=pickle.HIGHEST_PROTOCOL)
def alm_comb_freq(rlz,fcmbfreq,fcmbcomb,verbose=True,overwrite=False,freqs=['93','145','225'],mtype=[(0,'T'),(1,'E'),(2,'B')],roll=2):
for i in tqdm.tqdm(rlz,ncols=100,desc='alm combine'):
for (mi, m) in mtype:
if misctools.check_path(fcmbcomb.alms['o'][m][i],overwrite=overwrite,verbose=verbose): continue
salm, nalm, Wl = 0., 0., 0.
for freq in freqs:
Nl = np.loadtxt(fcmbfreq[freq].scl['n'],unpack=True)[mi+1]
Nl[0:2] = 1.
Il = 1./Nl
salm += pickle.load(open(fcmbfreq[freq].alms['s'][m][i],"rb"))*Il[:,None]
nalm += pickle.load(open(fcmbfreq[freq].alms['n'][m][i],"rb"))*Il[:,None]
Wl += Il
salm /= Wl[:,None]
nalm /= Wl[:,None]
oalm = salm + nalm
# remove low-ell for roll-off effect
if roll > 2:
oalm[:roll,:] = 0.
pickle.dump((salm),open(fcmbcomb.alms['s'][m][i],"wb"),protocol=pickle.HIGHEST_PROTOCOL)
pickle.dump((nalm),open(fcmbcomb.alms['n'][m][i],"wb"),protocol=pickle.HIGHEST_PROTOCOL)
pickle.dump((oalm),open(fcmbcomb.alms['o'][m][i],"wb"),protocol=pickle.HIGHEST_PROTOCOL)
def aps(rlz,lmax,fcmb,w2,stype=['o','s','n'],mtype=['T','E','B'],**kwargs_ov):
# compute aps for each rlz
L = np.linspace(0,lmax,lmax+1)
for s in stype:
if misctools.check_path(fcmb.scl[s],**kwargs_ov): continue
if kwargs_ov['verbose']: print('stype =',s)
cl = cmb.aps(rlz,lmax,fcmb.alms[s],odd=False,mtype=mtype,**kwargs_ov,w2=w2,fname=fcmb.cl[s])
# save average to files
mcl = np.mean(cl,axis=0)
vcl = np.std(cl,axis=0)
np.savetxt(fcmb.scl[s],np.concatenate((L[None,:],mcl,vcl)).T)
def apsx(rlz,lmax,fcmb,gcmb,w2,**kwargs_ov):
xl = cmb.apsx(rlz,lmax,fcmb.alms['o'],gcmb.alms['o'],**kwargs_ov)/w2
# save average to files
L = np.linspace(0,lmax,lmax+1)
mxl = np.mean(xl,axis=0)
vxl = np.std(xl,axis=0)
np.savetxt(fcmb.scl['x'],np.concatenate((L[None,:],mxl,vxl)).T)
def getbeam(t,lmax,nu=['93','145','225']):
bl = np.ones((len(nu),lmax+1))
for ki, freq in enumerate(nu):
bl[ki,:] = prjlib.get_beam(t,freq,lmax)
return bl
#////////////////////////////////////////////////////////////////////////////////
# Wiener filter
#////////////////////////////////////////////////////////////////////////////////
class wiener_objects:
def __init__(self,t,tqu,freqs,ntype,nside):
self.t = t
self.tqu = tqu
self.freqs = freqs
self.nside = nside
if t=='la':
self.Nside = 2048
self.lmax = 4096
if 'base' in ntype:
self.sigma = np.array([8.,10.,22.])
if 'goal' in ntype:
self.sigma = np.array([5.8,6.3,15.])
if t=='sa':
self.Nside = 512
self.lmax = 2048
if 'base' in ntype:
self.sigma = np.array([2.6,3.3,6.3])
if 'goal' in ntype:
self.sigma = np.array([1.9,2.1,4.2])
self.npix = 12*self.nside**2
self.bl = getbeam(t,self.lmax,nu=freqs)
if self.nside != self.Nside:
self.bl *= hp.sphtfunc.pixwin(self.nside)[:self.lmax+1] / hp.sphtfunc.pixwin(self.Nside)[:self.lmax+1]
self.maps = np.zeros((tqu,len(freqs),self.npix))
self.invN = np.zeros((tqu,len(freqs),self.npix))
self.W = prjlib.hitmap(t,self.nside)
hp.write_map('/global/cscratch1/sd/emilie_h/cinv_tests/W.png',self.W, overwrite=True)
self.M, __ = prjlib.window(t,nside=self.nside,ascale=0.)
hp.write_map('/global/cscratch1/sd/emilie_h/cinv_tests/M.png',self.M, overwrite=True)
#if t=='sa':
# self.M = hp.pixelfunc.ud_grade(hp.fitsfunc.read_map('../../data/sodelens/mask/mask_apodized.fits'),self.nside)
# self.M = self.M/(self.M+1e-30)
#self.M *= self.W/(self.W+1e-30) # further multiplying hitcount binary mask
def load_maps(self,fmap,i,Tcmb=2.72e6,verbose=False):
for ki, freq in enumerate(self.freqs):
if self.tqu == 1:
Ts = hp.fitsfunc.read_map(fmap[freq].lcdm[i],field=0,verbose=verbose)
Tn = hp.fitsfunc.read_map(fmap[freq].nois[i],field=0,verbose=verbose)
self.maps[0,ki,:] = self.M * hp.pixelfunc.ud_grade(Ts+Tn,self.nside)/Tcmb
if self.tqu == 2:
Qs = hp.fitsfunc.read_map(fmap[freq].lcdm[i],field=1,verbose=verbose)
Us = hp.fitsfunc.read_map(fmap[freq].lcdm[i],field=2,verbose=verbose)
Qn = hp.fitsfunc.read_map(fmap[freq].nois[i],field=1,verbose=verbose)
Un = hp.fitsfunc.read_map(fmap[freq].nois[i],field=2,verbose=verbose)
self.maps[0,ki,:] = self.M * hp.pixelfunc.ud_grade(Qs+Qn,self.nside)/Tcmb
print('Freq: ',freq)
print('Max total Q map: ',np.max(self.maps[0,ki,:]))
#hp.write_map('/global/cscratch1/sd/emilie_h/cinv_tests/Q_map_'+freq+'.png',self.maps[0,ki,:],overwrite=True)
self.maps[1,ki,:] = self.M * hp.pixelfunc.ud_grade(Us+Un,self.nside)/Tcmb
#hp.write_map('/global/cscratch1/sd/emilie_h/cinv_tests/U_map_'+freq+'.png',self.maps[1,ki,:],overwrite=True)
def load_invN(self,Tcmb=2.72e6): # inv noise covariance
for ki, sigma in enumerate(self.sigma):
print('Sigma: ',sigma)
self.invN[0,ki,:] = self.W * (sigma*(np.pi/10800.)/Tcmb)**(-2)
#hp.write_map('/global/cscratch1/sd/emilie_h/cinv_tests/invN_Q_'+str(ki)+'.png',self.invN[0,ki,:],overwrite=True)
if self.tqu == 2:
self.invN[:,ki,:] *= 2.
self.invN[1,ki,:] = self.invN[0,ki,:]
def cinv_core(i,t,wla,wsa,lmax,falm,cl,lTmax=1000,lTcut=100,**kwargs):
mn = len(wla.bl[:,0]) # Number of frequencies
if wla.tqu==1:
if t == 'la':
cl[0,:lTcut+1] = 0.
Tlm = CS.cninv.cnfilter_freq(1,mn,wla.nside,lmax,cl[0:1,:],wla.bl,wla.invN,wla.maps,**kwargs)
pickle.dump((Tlm),open(falm['T'][i],"wb"),protocol=pickle.HIGHEST_PROTOCOL)
if wla.tqu==2:
if t == 'co':
Elm, Blm = CS.cninv.cnfilter_freq_nside(2,mn,mn,wla.nside,wsa.nside,lmax,cl[1:3,:],wla.bl[:,:lmax+1],wsa.bl,wla.invN,wsa.invN,wla.maps,wsa.maps,**kwargs)
if t == 'la':
Elm, Blm = CS.cninv.cnfilter_freq(2,mn,wla.nside,lmax,cl[1:3,:],wla.bl,wla.invN,wla.maps,**kwargs)
pickle.dump((Elm),open(falm['E'][i],"wb"),protocol=pickle.HIGHEST_PROTOCOL)
pickle.dump((Blm),open(falm['B'][i],"wb"),protocol=pickle.HIGHEST_PROTOCOL)
def cinv(tqu,rlz,t,lmax,ntype,fmap,falm,cl,freqs=[],fmapsa='',overwrite=False,verbose=False,**kwargs):
# prepare objects for wiener filtering
if t == 'la':
wla = wiener_objects('la',tqu,freqs,ntype,kwargs['nsides'][0])
if t == 'co':
wla = wiener_objects('la',tqu,freqs,ntype,kwargs['nsides0'][0])
wiener_objects.load_invN(wla)
wsa = None
if t == 'co':
wsa = wiener_objects('sa',tqu,freqs,ntype,kwargs['nsides1'][0])
wiener_objects.load_invN(wsa)
# roll-off effect
roll = int(ntype[ntype.find('roll')+4:])
if roll > 2:
cl[:3,:roll] = 0.
# start loop for realizations
for i in tqdm.tqdm(rlz,ncols=100,desc='cinv'):
print('RLZ ',i)
print('tqu=',tqu)
print('T path check: ',misctools.check_path(falm['T'][i],overwrite=overwrite))
if (tqu == 1 and misctools.check_path(falm['T'][i],overwrite=overwrite)): continue
if (tqu == 2 and misctools.check_path(falm['E'][i],overwrite=overwrite)): continue
wiener_objects.load_maps(wla,fmap,i)
if t=='co':
wiener_objects.load_maps(wsa,fmapsa,i)
cinv_core(i,t,wla,wsa,lmax,falm,cl[:4,:lmax+1],verbose=verbose,**kwargs)
def iso_noise(rlz,lmin,lmax,fslm,falm,ncls,mtype=['T','E','B'],**kwargs_ov):
for i in tqdm.tqdm(rlz,ncols=100,desc='iso noise'):
for mi, m in enumerate(mtype):
if misctools.check_path(falm[m][i],**kwargs_ov): continue
alm = pickle.load(open(fslm[m][i],"rb"))
alm += CS.utils.gauss1alm(lmax,ncls[mi,:])
pickle.dump((alm),open(falm[m][i],"wb"),protocol=pickle.HIGHEST_PROTOCOL)
def interface(freqs,kwargs_ov={},kwargs_cmb={},run=['map2alm','combfreq','wiener_iso','wiener_diag']):
telescope = kwargs_cmb['t']
snmin = kwargs_cmb['snmin']
snmax = kwargs_cmb['snmax']
ntype = kwargs_cmb['ntype']
if 'hitmap' in run: # Don't run this if you want to use new scanning strategy (just use external hitmap)
output_hitmap(**kwargs_ov)
if 'simmap' in run:
if telescope in ['la','sa']:
for freq in freqs:
# signal sim
sobj = sim_map(telescope=telescope,freq=freq,snmin=snmin,snmax=snmax,ntype='',**kwargs_ov)
sim_map.SOsim(sobj)
# noise sim
sobj = sim_map(telescope=telescope,freq=freq,snmin=snmin,snmax=snmax,ntype=ntype,**kwargs_ov)
sim_map.SOsim(sobj)
if 'calcalm' in run: # map -> alm for each freq (and com) and telescope
if '_iso' in ntype:
# compute alms for isotropic noise
# need pre-computed frequency-coadded spectrum
if kwargs_cmb['fltr'] != 'none':
sys.exit('isotropic noise calculation is only valid for none-filtered case')
if telescope in ['la','co']:
# for isotropic noise spectrum and diagonal wiener filtering
pc = prjlib.analysis_init(t=telescope,freq='com',snmin=snmin,snmax=snmax,ntype=ntype.replace('_iso',''))
ncl = prjlib.loadocl(pc.fcmb.scl['n'],lTmin=pc.lTmin,lTmax=pc.lTmax)
# setup filenames for input and output
inp = prjlib.analysis_init(t='id',ntype='cv',snmin=snmin,snmax=snmax) # to use fullsky signal
out = prjlib.analysis_init(t=telescope,freq='com',fltr='none',snmin=snmin,snmax=snmax,ntype=ntype)
# alm and aps
iso_noise(pc.rlz,pc.roll,pc.lmax,inp.fcmb.alms['o'],out.fcmb.alms['o'],ncl[0:3,:],**kwargs_ov)
aps(pc.rlz,pc.lmax,out.fcmb,1.,stype=['o'],**kwargs_ov)
else:
if kwargs_cmb['fltr'] == 'none':
if telescope == 'co':
sys.exit('does not support none filter case for LA+SA')
if telescope == 'id': # map -> alm for fullsky case
stype = ['o']
ntype = 'cv'
freqs = ['145']
else:
stype = ['s','n','o']
# load survey window
w, wn = prjlib.window(telescope,ascale=kwargs_cmb['ascale'])
# map -> alm for each freq
for freq in freqs:
p = prjlib.analysis_init(t=telescope,freq=freq,snmin=snmin,snmax=snmax,ntype=ntype) # define parameters, filenames
map2alm(p.telescope,p.rlz,freq,p.nside,p.lmax,p.fcmb,w,roll=p.roll,**kwargs_ov) # map -> alm
aps(p.rlz,p.lmax,p.fcmb,wn[2],stype=stype,**kwargs_ov)
# combine alm over freqs
if telescope in ['la','sa']:
p = prjlib.analysis_init(t=telescope,freq='com',snmin=snmin,snmax=snmax,ntype=ntype)
fmap = prjlib.filename_freqs(freqs,t=telescope,ntype=ntype)
alm_comb_freq(p.rlz,fmap,p.fcmb,roll=p.roll,**kwargs_ov)
aps(p.rlz,p.lmax,p.fcmb,wn[2],**kwargs_ov)
elif kwargs_cmb['fltr'] == 'cinv': # full wiener filtering
if telescope == 'sa':
sys.exit('does not support cinv filter case for SA')
pw = prjlib.analysis_init(t=telescope,freq='com',fltr='cinv',snmin=snmin,snmax=snmax,ntype=ntype)
pI = prjlib.analysis_init(t='id',ntype='cv',snmin=snmin,snmax=snmax) # for cross
wn = prjlib.wfac(telescope,binary=True)
if telescope == 'la':
mtypes = ['T','E','B']
# filenames
fmap = prjlib.filename_freqs(freqs,t=telescope,ntype=ntype)
# Temperature
cinv_params = {\
'chn' : 7, \
'eps' : [1e-4,.1,.1,.1,.1,.1,0.], \
'lmaxs' : [4096,2048,2048,1024,512,256,20], \
'nsides' : [2048,2048,1024,512,256,128,64], \
'itns' : [100,5,5,5,5,5,0], \
'ro' : 1, \
'filter' : 'W' \
}
cinv(1,pw.rlz,telescope,4096,ntype,fmap,pw.fcmb.alms['o'],pw.lcl,freqs=freqs,**cinv_params,**kwargs_ov)
# Polarization
cinv_params = {\
'chn' : 6, \
'eps' : [1e-5,.1,.1,.1,.1,0.], \
'lmaxs' : [4096,2048,1024,512,256,20], \
'nsides' : [2048,1024,512,256,128,64], \
'itns' : [100,7,5,3,3,0], \
'ro' : 1, \
'filter' : 'W' \
}
cinv(2,pw.rlz,telescope,4096,ntype,fmap,pw.fcmb.alms['o'],pw.lcl,freqs=freqs,**cinv_params,**kwargs_ov)
if telescope == 'co':
mtypes = ['E','B']
cinv_params = {\
'chn' : 6, \
'eps' : [1e-5,.1,.1,.1,.1,0.], \
'lmaxs' : [2048,1000,400,200,100,20], \
'nsides0' : [1024,512,256,128,128,64], \
'nsides1' : [512,256,256,128,64,64], \
'itns' : [200,9,3,3,7,0], \
'ro' : 1, \
'reducmn' : 2, \
'filter' : 'W' \
}
cinv_params = {\
'chn' : 1, \
'eps' : [1e-5], \
'lmaxs' : [2048], \
'nsides0' : [1024], \
'nsides1' : [512], \
'itns' : [1000], \
'ro' : 1, \
'reducmn' : 0, \
'filter' : 'W' \
}
fmapla = prjlib.filename_freqs(freqs,t='la',ntype=ntype)
fmapsa = prjlib.filename_freqs(freqs,t='sa',ntype=ntype)
cinv(2,pw.rlz,telescope,2048,ntype,fmapla,pw.fcmb.alms['o'],pw.lcl,freqs=freqs,fmapsa=fmapsa,**cinv_params,**kwargs_ov)
# aps
aps(pw.rlz,pw.lmax,pw.fcmb,wn[0],stype=['o'],mtype=mtypes,**kwargs_ov)
apsx(pw.rlz,pw.lmax,pw.fcmb,pI.fcmb,wn[0],mtype=mtypes,**kwargs_ov)