-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtools_lens.py
executable file
·220 lines (147 loc) · 6.83 KB
/
tools_lens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# from external
import numpy as np
import healpy as hp
import sys
import pickle
import tqdm
# from cmblensplus/wrap/
import curvedsky
# from cmblensplus/utils/
import misctools
import quad_func
import cmb as CMB
# local
import prjlib
def load_klms(falm,lmax,fmlm=None):
klm = pickle.load(open(falm,"rb"))[0][:lmax+1,:lmax+1]
if fmlm is not None:
mlm = pickle.load(open(fmlm,"rb"))[0][:lmax+1,:lmax+1]
klm -= mlm
return klm
def klm_debiased(qobjf,i,lmax):
klm = pickle.load(open(qobjf.alm[i],"rb"))[0][:lmax+1,:lmax+1]
mlm = pickle.load(open(qobjf.mfb[i],"rb"))[0][:lmax+1,:lmax+1]
klm -= mlm
return klm
def compute_knoise(rlz,qobjf,W,M,iW2,fpalm,lmax,verbose=True,qlist=['TT'],lmin=10,ep=1e-40):
# used for compute_kcninv
nside = hp.pixelfunc.get_nside(W)
nkap = 0.
for i in tqdm.tqdm(rlz,ncols=100,desc='knoise',leave=False):
rklm = klm_debiased(qobjf,i,lmax)
rklm[:lmin,:] = 0.
rkap = curvedsky.utils.hp_alm2map(nside,lmax,lmax,rklm)
iklm = prjlib.load_input_plm(fpalm[i],lmax,ktype='k')
iklm = curvedsky.utils.mulwin(nside,lmax,lmax,iklm,W**2)
iklm[:lmin,:] = 0.
ikap = curvedsky.utils.hp_alm2map(nside,lmax,lmax,iklm)
nkap += iW2**2 * (rkap-ikap)**2/len(rlz)
#inkap = M/(nkap+ep)*(lmax-lmin)*(lmin+lmax+2.)/(4*np.pi)
inkap = M/(nkap+ep)/(4*np.pi)
pickle.dump((inkap),open(qobjf.nkmap,"wb"),protocol=pickle.HIGHEST_PROTOCOL)
return inkap
def compute_kcninv(qobjf,rlz,fltr,ckk,fpalm,nside=2048,Snmin=1,Snmax=100,klmin=10,chn=1,eps=[1e-5],itns=[100],lmaxs=[0],nsides=[0],qlist=['TT'],**kwargs_ov):
npix = 12*nside**2
lmax = np.size(ckk) - 1
M, __ = prjlib.window('la',ascale=0.)
bl = np.ones((1,lmax+1))
cl = np.reshape(ckk,(1,lmax+1))
#for q in tqdm.tqdm(qlist,ncols=100,desc='kcinv'):
for q in tqdm.tqdm(['TT'],ncols=100,desc='kcinv'):
if fltr=='cinv' and q!='TT':
W = M
iW2 = 1.
else:
W, __ = prjlib.window('la',ascale=5.)
iW2 = 1./(W**2+1e-60)
#if misctools.check_path(qobjf[q].nkmap,**kwargs_ov):
# inkk = pickle.load(open(qobjf[q].nkmap,"rb"))
#else:
#Rlz = np.linspace(Snmin,Snmax,Snmax-Snmin+1,dtype=np.int)
#inkk = compute_knoise(Rlz,qobjf[q],W,M,iW2,fpalm,lmax,lmin=klmin)
inkk = pickle.load(open(qobjf[q].nkmap,"rb"))
iNkk = np.reshape(inkk,(1,1,npix))
Al = np.loadtxt(qobjf[q].al,unpack=True)[1]
iNkk = np.mean(1./Al[2:1000]) * iNkk/np.max(iNkk)
for i in tqdm.tqdm(rlz,ncols=100,desc='each rlz ('+q+'):',leave=False):
klm = klm_debiased(qobjf[q],i,lmax)
klm[:klmin,:] = 0.
kap = np.reshape( M*iW2 * curvedsky.utils.hp_alm2map(nside,lmax,lmax,klm) , (1,1,npix) )
wklm = curvedsky.cninv.cnfilter_freq(1,1,nside,lmax,cl,bl,iNkk,kap,chn,lmaxs=lmaxs,nsides=nsides,itns=itns,eps=eps,filter='w',ro=1)
pickle.dump((wklm),open(qobjf[q].walm[i],"wb"),protocol=pickle.HIGHEST_PROTOCOL)
def aps(fltr,qobj,rlz,fpalm,wn,verbose=True):
# Compute aps of reconstructed lensing map
# This code can be used for checking reconstructed map
for q in tqdm.tqdm(qobj.qlist,ncols=100,desc='aps'):
cl = np.zeros((len(rlz),4,qobj.olmax+1))
W2, W4 = wn[2], wn[4]
for ii, i in enumerate(tqdm.tqdm(rlz,ncols=100,desc='each rlz ('+q+'):')):
# load reconstructed kappa and curl alms
glm, clm = pickle.load(open(qobj.f[q].alm[i],"rb"))
mfg, mfc = pickle.load(open(qobj.f[q].mfalm[i],"rb")) # Changed mfb to mfalm
# load kappa
klm = prjlib.load_input_plm(fpalm[i],qobj.olmax,ktype='k')
# compute cls
cl[ii,0,:] = curvedsky.utils.alm2cl(qobj.olmax,glm-mfg)/W4
cl[ii,1,:] = curvedsky.utils.alm2cl(qobj.olmax,clm-mfc)/W4
cl[ii,2,:] = curvedsky.utils.alm2cl(qobj.olmax,glm-mfg,klm)/W2
cl[ii,3,:] = curvedsky.utils.alm2cl(qobj.olmax,klm)
np.savetxt(qobj.f[q].cl[i],np.concatenate((qobj.l[None,:],cl[ii,:,:])).T)
# save sim mean
if rlz[0]>=1 and len(rlz)>1:
np.savetxt(qobj.f[q].mcls,np.concatenate((qobj.l[None,:],np.mean(cl[1:,:,:],axis=0),np.std(cl[1:,:,:],axis=0))).T)
def quad_filter(fcinv,fdiag,lmax,lcl,**kwargs):
# CMB filtering
fl = prjlib.loadocl(fcinv['o'],**kwargs)
ol = prjlib.loadocl(fdiag['o'],**kwargs)
xl = prjlib.loadocl(fcinv['x'],**kwargs)
alp = np.zeros((3,lmax+1))
ocl = np.zeros((4,lmax+1))
ifl = np.zeros((3,lmax+1))
alp[1:3,2:] = xl[1:3,2:]/lcl[1:3,2:]
ocl[0,:] = ol[0,:]
ocl[1:3,2:] = fl[1:3,2:]/alp[1:3,2:]**2
ocl[3,:] = ol[3,:]
ifl[0,:] = lcl[0,:]
ifl[1:3,2:] = fl[1:3,2:]/alp[1:3,2:]
return ocl, ifl
def init_qobj(stag,doreal,**kwargs):
# setup parameters for lensing reconstruction (see cmblensplus/utils/quad_func.py)
d = prjlib.data_directory()
ids = prjlib.rlz_index(doreal=doreal)
qobj = quad_func.reconstruction(d['root'],ids,stag=stag,run=[],**kwargs)
return qobj
def interface(run=[],kwargs_ov={},kwargs_cmb={},kwargs_qrec={},ep=1e-30):
if kwargs_cmb['t'] != 'la':
sys.exit('only la is supported')
# Define parameters, filenames for input CMB
p = prjlib.analysis_init(**kwargs_cmb)
# Load pre-computed w-factor which is used for correction normalization of spectrum
wn = prjlib.wfac(p.telescope)
# Compute filtering
if p.fltr == 'none': # for none-filtered alm
# Load "observed" aps containing signal, noise, and some residual.
# This aps will be used for normalization calculation
ocl = prjlib.loadocl(p.fcmb.scl['o'],lTmin=p.lTmin,lTmax=p.lTmax)
# CMB alm will be multiplied by 1/ifl before reconstruction process
ifl = ocl#p.lcl[0:3,:]
elif p.fltr == 'cinv': # for C^-1 wiener-filtered alm
pc = prjlib.analysis_init(t=p.telescope,freq='com',fltr='none',ntype=p.ntype)
# Compute aps appropriate for C^-1 filtering case.
ocl, ifl = quad_filter(p.fcmb.scl,pc.fcmb.scl,p.lmax,p.lcl,lTmin=p.lTmin,lTmax=p.lTmax)
ocl[ocl<=0.] = 1e30
ifl[ifl<=0.] = 1e30
wn[:] = wn[0]
else:
sys.exit('unknown filtering')
if 'iso' in p.ntype: #fullsky case
wn[:] = 1.
d = prjlib.data_directory()
ids = prjlib.rlz_index(doreal=p.doreal)
qobj = quad_func.reconstruction(d['root'],ids,rlz=p.rlz,stag=p.stag,run=run,wn=wn,lcl=p.lcl,ocl=ocl,ifl=ifl,falm=p.fcmb.alms['o'],**kwargs_ov,**kwargs_qrec)
# Aps of reconstructed phi
if 'aps' in run:
aps(p.fltr,qobj,p.rlz,p.fpalm,wn)
# Cinv kappa
if 'kcinv' in run:
compute_kcninv(qobj.f,p.rlz,p.fltr,p.kk[:qobj.olmax+1],p.fpalm,Snmin=p.snmin,Snmax=p.snmax,qlist=qobj.qlist,**kwargs_ov)