-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathResNet.py
executable file
·64 lines (52 loc) · 1.98 KB
/
ResNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
class BasicBlock(nn.Module):
def __init__(self, in_planes, out_planes, stride = 1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size = 3, stride = stride, padding = 1, bias = False)
self.bn1 = nn.BatchNorm2d(out_planes)
self.conv2 = nn.Conv2d(out_planes, out_planes, kernel_size = 3, stride = 1, padding = 1, bias = False)
self.bn2 = nn.BatchNorm2d(out_planes)
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size = 1, stride = stride, bias = False),
nn.BatchNorm2d(out_planes),
)
def forward(self, x):
opt = F.relu(self.bn1(self.conv1(x)))
opt = self.bn2(self.conv2(opt))
opt += self.shortcut(x)
opt = F.relu(opt)
return opt
class ResNet(nn.Module):
def __init__(self, block):
super(ResNet, self).__init__()
self.link_planes = 16
self.conv1 = nn.Conv2d(3, 16, kernel_size = 7, stride = 2, padding = 5, bias = False)#kernel_size = 7, stride = 2, padding = 5
self.bn1 = nn.BatchNorm2d(16)
self.layer1 = self.layer_maker(block, 16, 5, 1)#96
self.layer2 = self.layer_maker(block, 32, 6, 2)#48
self.layer3 = self.layer_maker(block, 64, 8, 2)#24
self.layer4 = self.layer_maker(block, 128, 5, 2)#12
self.fc1 = nn.Linear(128*3*3, 32)
self.fc2 = nn.Linear(32, 2)
def layer_maker(self, block, planes, n_blocks, first_stride):
strides = [first_stride] + [1]*(n_blocks - 1)
layers = []
for i_stride in strides:
layers.append(block(self.link_planes, planes, i_stride))
self.link_planes = planes
return nn.Sequential(*layers)
def forward(self, x):
opt = F.relu(self.bn1(self.conv1(x)))
opt = self.layer1(opt)
opt = self.layer2(opt)
opt = self.layer3(opt)
opt = self.layer4(opt)
opt = F.avg_pool2d(opt, 4)
opt = opt.view(opt.size(0), -1)
opt = F.relu(self.fc1(opt))
f = opt
opt = self.fc2(opt)
return opt, f