-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathCorrelation.pynb
188 lines (188 loc) · 63.1 KB
/
Correlation.pynb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Numerical Relationships Between Multiple Variables\n",
"\n",
"Next, we're going to study the concept of correlation. This is a concept that many of us have an intuitive sense of but sometimes the definitions can be nuanced. "
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5.096584073332234e-50\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEWCAYAAACNJFuYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de7gcdZ3n8fc3yRFOuCUYBDlcgg4XjQjIGQYmM4tcBEQxKOo4oOKMa0ZRd7ksThzWBR1Gz4ijjrt4yT4i6uBwGSDGBxBlgzKygp4YUALiItccQA6OQSAxN777R1VDp7q6u7q7bl31eT1PP5xTVV39qz6hvvX7fX8Xc3dERESazSi6ACIiUj4KDiIi0kLBQUREWig4iIhICwUHERFpoeAgIiItFBxkIGb2oJkdm9G5V5vZa7M4t4h0puAw5MzsVDObNLNnzOwxM7vBzP6s6HL1yswuNbMLm7e5+wJ3/0FBRUrEzM4ys8fN7PdmdomZbdPh2P9sZveFf6vvmtnuMce8yMzuMbM1ke0zzexCM3vUzJ42s1VmNifc9+XwnI3XBjN7uum9Hwr/jWwws0tjPnO2mX3RzJ40s6fM7JamfTdEzr3RzH4Rc44jzcyb/4YJyrWzmV1rZs+a2UNmdmrknKeG2581s2VmtnOSazKz+WFZmj/7Y037V0f2bTaz77T+xepNwWGImdnZwOeBTwK7AnsBXwQW9XGuWUm2yQvM7HhgCXAMsDfwMuDjbY59LcHfaRGwM/AA8K8xh54LTMds/zjwp8ARwI7Au4A/ALj7+919+8YrPO9VTe99FLgQuKTNpSwNy/SK8L9nNXa4++sj5/6/kXNjZiPAPwO3N29PUK6LgY0E/3ZPA75kZgvCcy4AvhJe567AOoJ/20mvCWBO0+f/fVO5FjSVaQfgkeg1CeDueg3hC9gJeAZ4W4djtiEIHo+Gr88D24T7XgusAf4WeBz4Zty28Ng3AncAawluDq9u+owHgWPDn2cQ3Cx/DfwWuBLYuenYq8LzPgXcAiwIty8GNhHcKJ4BvhNz7iTXcg7wBPAY8Fc5/A2+BXyy6fdjgMfbHPsZ4OKm33cHHHh507Z9gHuA1wNrmrbPDb+Xlyco03bA08CRMfsuBC6NbDsA+D2wY4Jzzwe2APMj25cAnwYuBS5MUq7w943Afk3HfBOYCH/+JPCtpn0vD4/fIcE1zQ+/21kJrunIsFzbZf3vZdheqjkMryOAbYFrOxxzHnA4cDBwEHAY8N+b9u9G8KS4N8ENumWbmR1C8HT2N8CLCZ7mlrdpPvkwcDLB/3C7A78jeDpsuAHYF3gJ8DPgMgB3Xxr+/GkPnuhO6vNadgLGgPcCF5vZ3LgvJWxCWdvm9fO497SxALiz6fc7gV3N7MVtjreYn1/VtO1/An8HrI+870BgM/DWsAnrV2b2wTafcQpBzeOWNvujDgMeAj4eNiv9wsxOaXPsu4F/d/cHn78Is72BvwY+0eVzouXaD9js7r9qOuZOgu8UIt+tu/+aMJgkuajQQ2a2xsy+Zmbz2hxzOnC1uz/bw3lrQcFheL0YeNLdN3c45jTgE+7+hLtPEzRNvKtp/3PA+e6+wd3Xt9m2GPiKu9/u7lvc/evABoIbddT7gfPcfY27bwAuILihzQJw90vc/emmfQeZ2U4Jr7fbtWwK929y9+sJnrT3jzuRu5/h7nPavF6dsDwA2xPUghoaP+8Qc+x3gbeb2avNbBT4HwRPt7MBzOzNwEx3jwv2exAEvv0IahdvBS4ws9fFHHs68A0PH4sT2IMgQD1FENA/BHzdzF4Rc+y7CWoHzb4AfMzdn+nyOdFybU9QY2n2FC98d9HvNrq/kyeBPyZ4wDk0fM9l0YPMbDbBd3lpgnPWjoLD8PotMK9LXmB3gqfChofCbQ3T7v6HyHui2/YGzml+ugb2jJyn+dhrm467h6AZYtcwoTphZr82s98TNBkBtHui6/VafhsJlOsIbjCpMLPTmhKYN4SbnyFo/29o/Pw0Ee5+E3A+cDXBtT8YHrfGzLYjaJb5L20+vhG4P+Hu693958DlwImRMu5F0MT2jR4ubT1BYL3Q3Te6+w+Bm4HjIuf+M4La2b81bTuJoJnnik4f0KZc0e+O8PenE+5vy92fcfdJd9/s7r8hCHjHmVk0sLwF+A/gh93OWUcKDsPrxwRP8Cd3OOZRght2w17htoa4p8votkeAf4g8Xc9297hk6iPA6yPHbuvuU8CpBMnYYwmegueH72k0r3R70u12LYnF9KJpfq2Oe4+7X+YvJDdfH25eTdDE1XAQ8Bt3/22bc1zs7vu6+64EQWIWcBdBU9t84N/N7HHgGuClYRPSfKDR1NX8HcV9X+8CbnX3+7t/C8+La0aLO/fpwDWRGsIxwHhYzseBvwDONLNvJyjXr4BZZrZv07aDCL5TiHy3ZvYygrxTczNUUo3rid7veq1l1UvRSQ+9+n8RJGB/QxAgZgMjBMnMT4f7LyRIIO9C8IT+I8KEIWESN3K+uG3jBDf9PyG4kW8HvIEwMcjWSeOzgB8Ae4e/7wIsCn8+gyCpvWN4ji8S/E/7R+H+CZoSkDHn7vVann9vht//CQQJ9lcCc4AVhAnVmGO3JWi+MYLA9gPCZDZBkNit6fUWgsC3G0FTEwRt9V8huEG+giDxfkzkM+4F/jrms2eFn/8pgqTvtoTJ2vDfzH3Ax8LjFhI8nR/Q9P5RgiadoyPn3SFS7iuAz9HUCaFLuS4n6MG0Xfi5T/FCJ4UFBM1Ofx7u/xfg8oTX9CcETYozCJpfrwBujnz2HgR5nK5J/rq+Ci+AXgP+AYO2+Eng2fBGdR3wp+G+bQnahB8LX18Atg33xd1QW7aF208AfkrQW+kxgl5HccFhBnB2eDN4mqDXUuMGuD3w7XD7QwTt183BYV9e6BG1LObcvV7L8+/N+Ps/myBA/x74GmEPqnDfauC08Oc5BE/pjb/Tpwhv/DHnjLueMYK8xTPA/cDfRPYfEZ57h5jzXRB+182vC5r2LyCoiT4L3A28OfL+vwz/Ztblu7iUSG+lLuXaGVgW7n8YODWy/9Rw+7Phv52dk1xTWN4Hwvc9RtCctVvk3B8lSK4X/v9wWV8WflEiIiLPU85BRERaKDiIiEgLBQcREWmh4CAiIi0qMbHavHnzfP78+UUXQ0RkqKxcufJJd98lbl8lgsP8+fOZnJwsuhgiIkPFzB5qt0/NSiIi0qKUwcHM9jSzm83s7nBhjv9adJlEROqkrM1Km4Fz3P1n4WRZK83s++5+d9EFExGpg1LWHNz9MXf/Wfjz0wSze44VWyoRkfooZXBoFs5KeQiRJQjNbHG4huzk9HTcqooiItKvsjYrAWBm2xNMbXymu2+1MIgHq4ctBRgfH89tgqhlq6a46MZ7eXTtenafM8q5x+/PyYeoUiMi1VLa4BAuWn41cJm7X1N0eSAIDB+95hes37QFgKm16/noNb8AUIAQkUopZbOSmRnwVeAed/9s0eVpuOjGe58PDA3rN23hohvvLahEIiLZKGVwIFj4413A0WZ2R/g6sdubsvbo2ui67523i4gMq1I2K7n7j3hh+cjS2H3OKFMxgWD3OaMFlEZEJDtlrTmU0rnH78/oyMytto2OzOTc4/cvqEQiItkoZc2hrBpJZ/VWEpGqU3Do0cmHjCkYiEjlqVlJRERaKDiIiEgLBQcREWmh4CAiIi2UkE6B5lsSkapRcBiQ5lsSkSpSs9KANN+SiFSRgsOANN+SiFSRgsOA2s2rpPmWRGSYKTgMSPMtiUgVKSE9IM23JCJVZO65rbCZmfHxcZ+cnCy6GIC6tYrI8DCzle4+HrdPNYcUqVuriFSFcg4pUrdWEakK1RxIrykoabdWNT2JSNnVPjik2RSUZBlRNT2JyDCofbNSmk1BSbq1qulJRIZB7WsOaY5wTtKtNc3PG6R5Sk1bItJJ7YNDkqagXnRbRjStzxukeUpNWyLSTe2blQYZ4bxs1RQLJ1awz5LrWDixgmWrpjL9vGaDNE+paUtEuiltcDCzE8zsXjO7z8yWZPU5Jx8yxqfeciBjc0YxYGzOKJ96y4GJn76n1q7HeeHpu1uA6PfzogZpntJkgSLSTSmblcxsJnAx8DpgDfBTM1vu7ndn8XndmoLidHr67naufj4vapDmqbSb0kSkespaczgMuM/d73f3jcDlwKKCy7SVIp6+m5ux1m3czMgM22p/0uYpTRYoIt2UNTiMAY80/b4m3PY8M1tsZpNmNjk9PZ1r4SD/qbqjzVi/W7cJDOaMjvTcPJVW05aIVFcpm5WScPelwFIIJt7L+/PPPX7/rXr8QDpP3+26mMY1Y23a4my3zSzuOP+4nj8njaYtEamusgaHKWDPpt/3CLeVRhZTdXfqYqoksojkqazB4afAvma2D0FQeAdwarFFapX203enJPdOoyOsXb+p5T1KIotIFkoZHNx9s5l9CLgRmAlc4u6rCy5W5trVAqbWrmdkprVsH5lhuSeRNbJapB5KGRwA3P164Pqiy5Gndl1MIcgvRG2/7axcb8waWS1SH2XtrVQq/YyE7kdcF9NO1q5rbWbKsqwaWS1SH6WtOZRFnk/L0ST3DDO2dFjGNZpvyLqsSoqL1IdqDl1csHx1rk/LJx8yxq1LjuaBiTd0DAxx3WazfrLPe2yHiBRHwaGDZaumYnsIQfZPy8tWTdGagg7MNIsdtJblk/2yVVOs27i5ZbtGVotUk4JDB52euLN+Wr7oxnuJqzcY8E9vPyi2mSirJ/tGc9XvIjmOOaMjGlktUlEKDh10euLO+mm53Wc77fMHWc2ZFNdcBbDdNvn2lhKR/Cg4dNDuiXvu7JHMb4rtPnusQy0gqzmTlIgWqR/1Vuqg3fxJ55+0oLDP7lYL6DRqu98BbJriW6R+VHPooMjZS9P+7H4XJwJN8S1SR+YduksOi/HxcZ+cnCy6GKW2cGJF7NP/2JxRbl1ydNf3a9oMkeoxs5XuPh63T81KNTFo3kBTfIvUi4JDxbR7wlfeQER6oZxDhXTKKyhvICK9UM2hBNJqz+80fUYjr6C8gYgkoeBQsDQny+uWVxgkb6CEtEi9qFmpYGlOlpf19Bn9dIMVkeGk4FCwNEcfx+UVDDjqgF36KdrzkgSwbutI5LUmhoikQ81KOcmyF1Hzubcd2TreO3D1yinG996572agbgGsW9OYVpATGT6qOeSg315ESZ62o+dev+m5lmMGXdOhW3NVt5pFL01nZaxhlLFMIllTcMhBp5tju2kygETt/O1mTI0aZJK8bt1gu9UskjadlTG3UcYyieRBzUo56KcX0cKJFR0DSrdzRw2SlI4uXxrtrdStaSxp01m3IFqEMpZJJA8KDjnoJ6+Q9Gm73bmbpTHYrVM32G4zyCadYbaMU4OXsUwieShds5KZXWRmvzSzn5vZtWY2p+gyDaqf0clJu6XGnXtkhjF39kii2VzTaE/vNoNs0hlmy7hGdRnLJJKH0s3KambHASvcfbOZ/SOAu/9tp/cMw6ysvQ4ii/bwgSCgxN1U+x2g1stn5KFs5SlrmUTS0mlW1tIFh2Zm9mbgre5+WqfjhiE49CPrUcmDTuOdhTKOxC5jmUTSMMzB4TvAFe7+LzH7FgOLAfbaa69DH3roobyLV6hBbljLVk1xwfLVrF2/qe0xD068Ia2iikhJlW49BzO7CdgtZtd57v7t8JjzgM3AZXHncPelwFIIag4ZFbWUBhlUtmzVFOdedSebnmv/lc00S6+wIjKUCgkO7n5sp/1m9h7gjcAxXuaqTUEG6V550Y33dgwMAFtK/JWriUckH6XrympmJwAfAY5093VFl6eMBulemeSYsUhPnLLckDUNh0h+ShccgP8FbAN834Lmjdvc/f3FFql4zTfoGWaxT/dJuld2GxcR7WJbphuyBqSJ5Kd04xzc/Y/cfU93Pzh8KTBEpnCICwxJB7qde/z+jMyIzynMGR1p6aKZ5pTig9KANJH8lLHmIBHt5k+aacZz7j019TSOae6tNHf2COeftCD2/WW6IWsdbJH8KDgMgXY34ufceaCPLqe9rAhXphty0mk4RGRwpWtWklZFTuHQz9QfWUk6DUcaNE231J2CwxAo8gad5w25LDRNt4ialYZCtymz8/j8orquNl/zUQfswtUrpzLvOaVeUSIKDkOjqBt0UeK60F5228NE+2llcdMuUxJepCgKDpKaNAfLxT29txu3nfZNu0xJeJGiKOcgqUi7nb6XG37aN+0yJeFFiqLgIKlIe7Bcuxt+dPheFjftOibhRaLUrCSpSLudvt2YhlMOHePmX05nnpivW45HJErBQVKRdjt90T20ROpOwUFSkcXo5Tyf3tOeebYsM9mK9EvBQVIxzE/6ac88W6aZbEX6peAgXSV9Ch7Wdvq0B71pEJ1UgYKDdFSHp+C0k+kaRCdVoK6s0lGZ1nPIStoTG7Z73wwzzc8kQ0PBQTqqw1Nw2oPe4s4HwSJNmsBPhoWCg3RU5HTheUl70FvjfDOtdcW9qtW6pLqUc5CO6rLATtrJ9JMPGeOsK+6I3VelWpdUl2oO0pGmkuhfHWpdUl2qOUhXw9pFNW/d1p+Aata6pJpUcxBJQdystFevnOKUQ8dU65KhpJqDlMqwTjvRrsvvzb+c5tYlRxdUKpH+lbbmYGbnmJmb2byiyyL5GOa1m+vQ5VfqpZTBwcz2BI4DHi66LJKfYR5wp+SzVE0pgwPwOeAjtF8ZUipomJ+++xlIt2zVFAsnVrDPkutYOLFiKGpIUh+lCw5mtgiYcvc7uxy32MwmzWxyeno6p9JJljpNO1H2G2ivXX6HuQlN6sHc8384N7ObgN1idp0H/B1wnLs/ZWYPAuPu/mSn842Pj/vk5GT6BZVcRSf5izM6MjOXHj9ZJ8YXTqyIXRxpbM6oEtiSGzNb6e7jcfsK6a3k7sfGbTezA4F9gDstmHpgD+BnZnaYuz+eYxGlANE1IWaYsSXy8JLH1Nd5zEQ7zE1oUg+l6srq7r8AXtL4PWnNQYZPuyfz5gF3+yy5Lva9Wd9A81iPIe1lVUXSVrqcg1Rf0vb2XnoApZnczeOpPu2ZYEXSVurg4O7zVWuonqRdVpPeQOOCzZlX3MHBH/9eX0GiXVBySC0pXqY5q9RrSuK0bVYys+uBM9z9wfyKI3WQ9Mk86brUccEGYO36TX3lCuJmom1IM/9Qhjmr6rDSn/SnU87ha8D3zOzrwKfdfVNOZZKK66W9PckNtFNzTz+5gsaxFyxfzdr1rf/sq7QetNa7lnbaNiu5+1XAa4AdgUkz+29mdnbjlVsJpXLSbm/vlsTtN1ewYfNzqZ+zbNRrStrplnPYCDwLbAPsEHmJ9CXt9vZ2y3I29NMD6ILlqzuOt6hKryJN+yHtdMo5nAB8FlgOvMbd1+VWKqm8NNvbG+f5+HdW87t1WzcD9VMjWbZqKrY5aZBzllVdVvqT3nXKOZwHvM3dV+dVGJF+NYJNGiObO030N9OsUmsyJE36S/0UMn1G2jR9hqRpnyXXtZ3x8fN/cbBunFIZpZs+Q6TM2vWmmjt7pFSBYVgXRpLhUOpBcCJZ6Dboq11vqvNPWpBnMTvSrK6SNQUHqZUkN9UyjV5uZ5gXRpLhoGYlqZWkg77KMHq5E41PkKyp5iC1UpWbqsYnSNYUHKRWqnJT1ayukjU1K0ktNHr2TK1dj7H14uTtZnotc08gjU+QrCk4SOVFZx51eD5AjMXcVPOcqXSQIFT2vIgMNwUHqby4JHQjMMSt15zXTKWaLlvKTDkHqby4AW2dtueVtFZ3VCkz1Ryk8maasSVmmpiZZrHHd1tvIq18RFV6Tkk1qeYglRcXGDpt79QTKM2RyVXpOSXVpOAglTfW5mbbbnunEdJpNgWpO6qUmZqVpPL6WbOgXU+gNJuC1B1VykzBQSovzZtwL+tfJy2bgoGUUSmDg5l9GPggsAW4zt0/UnCRZMildROu48ppZR8QKNkoXXAws6OARcBB7r7BzF5SdJlEGurWFKSxGPVVuuAAfACYcPcNAO7+RMHlEdnKsDcF9VITyGtAoJRPGXsr7Qf8uZndbmY/NLM/jjvIzBab2aSZTU5PT+dcRJHh1GtXXI3FqK9CgoOZ3WRmd8W8FhHUZnYGDgfOBa40ax2t5O5L3X3c3cd32WWXnK9AZDj12hVXYzHqq5BmJXc/tt0+M/sAcI27O/ATM3sOmAeoeiAyoF5rAnkk4JXwLqcy5hyWAUcBN5vZfsCLgCeLLZJINfTaFbddAh5g4cSKgW/oSniXVxmDwyXAJWZ2F7AROD2sRYjIgNIYEJjmDV0J7/IqXXBw943AO4suh0gVpdEVt90N/Zwr79zqM5JQwru8ShccRCRbg3bFbXfj3uLecw0i7RHnkp4ydmUVqa1lq6ZYOLGCfZZcx8KJFX3N9pq1TjfuXichzGrywWH4HstOwUGkJNKcDjxLcTf0Zr00CXWaAbdfw/I9lp2alURKoltytixdPhufec6Vd8auidFrk1BcwnuQnlBKcqdDwUGkJDolZ8vW5bPxmWmPgUjjOpXkToealURKotNo5DKuN51Fk1Aa16lR3elQzUGkJDqNQTjrijti31P003DakxCm8dRfx2nVs6DgIFISncYgXHTjvUPX5bOfHMlOoyOsXb8pdntS/YzlKEs+p0wUHERKpN2T+LA9DfebO2idYrPz9nZ6qdGULZ9TFso5iAyBLNr3s9Rv7mDtutZaQ6ftaShjPqcMVHMQGRLDtMhQv7mDIkZMq3dTPNUcRCR1/fYYihtgZ8BRB2S3Zot6N8VTcBCR1PU7LcbJh4xxyqFjNKcYHLh65VRmI5yzmsJj2Ck4iEjqBsmR3PzLaaLjrrPMAQxbPicvVoWlEsbHx31ycrLoYohIH6LdSONyDhA0Lz0w8YZ8C1dxZrbS3cfj9ikhLSKFietGatBScwDlAPKmZiURKUxcN1IHosMalAPIn2oOIjnSSNyttesu6gRt//qeiqPgIJITjcRt1S7HMDZnlFuXHJ365yk4J6dmJZGcaCRuqzy7kWoRoN6o5iCSk6qNxE3jKbyfSfL6pUWAeqPgIJKTIqaGyEqaTWR5TQtSteCcNTUrieSkSiNxh7GJbJimyWgslbrPkutYOLGikKav0tUczOxg4MvAtsBm4Ax3/0mxpRIZXJ5NKFnrtqRpGa8xrWnPs76+snRcKN0IaTP7HvA5d7/BzE4EPuLur+30Ho2QFsnXwokVsU1kc2eP8IdNz7XcgMsyHcWgN/bojRvSv752320WPbiGbYS0AzuGP+8EPFpgWUQkRruncHdKnfQdNL+RR1K7LLmRMuYczgQuMrNHgM8AH407yMwWm9mkmU1OT0/nWkCRums3Wd1TMUt8QnWSvnncuMuSGymk5mBmNwG7xew6DzgGOMvdrzaztwNfBY6NHujuS4GlEDQrZVhcEYkR9xRe1FrXeeU5su5xtmzVFM9u2NyyvYiOC4XUHNz9WHd/Vczr28DpwDXhoVcBhxVRRhHpXRE9svIc3Jbl9TWuY22k9jV39kghOZsyNis9ChwZ/nw08P8KLIuI9KCItRHy7Fab5fXFXQfA7BfNKiRfU8aE9PuAfzazWcAfgMUFl0dEehDtstu4SWd1g8s7gZvVoL2yJKIbShcc3P1HwKFFl0NE+pN3P/2qjDwv23WUsVlJRIZY3qOnqzLyvGzXUbqag4gMtyKaeWD4R56X7ToUHEQkVUU0j2SRByhiGpC8JiFMQsFBRFKV1hxGRco6b5I08BQ5T5WCg4ikqsjmkbRupllOk5E08BQ9AZ+Cg4ikrojmkTRvplnmTZIGnqIXJ1JvJRGphDR7SWU5v1HSwFP0uAcFBxGphDRvpll2K00aeIqegE/BQUQqIc2baZbTZCQNPEWPe1DOQUQqIe1eUlnlTZIm7Ise91C6leD6oZXgRASK7fo5jIZtJTgRkb6UaRDZsFPOQUREWig4iIhICzUriUjtZJ2bqELuQ8FBRGolj3mTipz2Ii1qVhKRWsl6vYm817PIimoOIlIrWU1L0WhKipuuPI3z5001BxGplSympWg0JbULDIOevwgKDiJSK1lMSxHXlJTm+YugZiURqZUspqXo1GQ0pt5KIiLDIe2R1O2WRh2bM8qtS45O7XPy7CJbSLOSmb3NzFab2XNmNh7Z91Ezu8/M7jWz44son4hIL/KYQbU5r+G80EV22aqp1D6jWVE5h7uAtwC3NG80s1cC7wAWACcAXzSzma1vFxEpjyyn+G7Iu4tsIc1K7n4PgJlFdy0CLnf3DcADZnYfcBjw43xLKCLSm6wn/ct7Zbiy5RzGgNuafl8TbhMRqbRu+YR2eY2sushm1qxkZjeZ2V0xr0UpnX+xmU2a2eT09HQapxQRKUSSfELeK8NlVnNw92P7eNsUsGfT73uE2+LOvxRYCsFiP318lohIKXTKJzRqD3mvDFe2ZqXlwLfM7LPA7sC+wE+KLZKISLaS5hPyXMyoqK6sbzazNcARwHVmdiOAu68GrgTuBr4LfNDd2w87FBGpgCym9BhUIcHB3a919z3cfRt339Xdj2/a9w/u/nJ339/dbyiifCIieco7n5BE2ZqVRERqJ+98QhIKDiIiJZBnPiEJzcoqIiItVHMQEclIp4FtZV9n2tyHf4jA+Pi4T05OFl0MEZHnRdeSbpgzOsIbD3opV6+c2mrf6MjM1Odj6sbMVrr7eNw+NSuJiGSg3QJAa9dv4rLbHi79OtMKDiIiGeg0IV679poyrTOt4CAikoF+BrCVaZ1pBQcRkQzEDWxrFl2woOhBb1EKDiIiGWgsADR39kjLvtGRmZx2+F6ZLg40KHVlFRHJSGNgW9m7rcZRcBARyVjZRj8noWYlERFpoeAgIiItFBxERKSFgoOIiLRQcBARkRaVmHjPzKaBh/p8+zzgyRSLMyzqeN11vGao53XX8Zqh9+ve2913idtRieAwCDObbDcrYZXV8brreM1Qz+uu4zVDutetZiUREWmh4CAiIi0UHGBp0QUoSB2vu47XDPW87jpeM6R43bXPOYiISCvVHEREpIWCg4iItKhNcDCzE8zsXjO7z8yWxOzfxsyuCPffbmbz8y9l+hJc99lmdvTqbQMAAAQnSURBVLeZ/dzM/o+Z7V1EOdPU7ZqbjjvFzNzMKtHlMcl1m9nbw7/3ajP7Vt5lTFuCf997mdnNZrYq/Dd+YhHlTJOZXWJmT5jZXW32m5l9IfxOfm5mr+nrg9y98i9gJvBr4GXAi4A7gVdGjjkD+HL48zuAK4oud07XfRQwO/z5A8N+3UmuOTxuB+AW4DZgvOhy5/S33hdYBcwNf39J0eXO4ZqXAh8If34l8GDR5U7huv8T8Brgrjb7TwRuIFhs7nDg9n4+py41h8OA+9z9fnffCFwOLIocswj4evjzvwHHmFl0Jb9h0/W63f1md18X/nobsEfOZUxbkr81wN8D/wj8Ic/CZSjJdb8PuNjdfwfg7k/kXMa0JblmB3YMf94JeDTH8mXC3W8B/qPDIYuAb3jgNmCOmb2018+pS3AYAx5p+n1NuC32GHffDDwFvDiX0mUnyXU3ey/BE8cw63rNYTV7T3e/Ls+CZSzJ33o/YD8zu9XMbjOzE3IrXTaSXPMFwDvNbA1wPfDhfIpWqF7/v4+lleAEADN7JzAOHFl0WbJkZjOAzwLvKbgoRZhF0LT0WoIa4i1mdqC7ry20VNn6S+BSd/8nMzsC+KaZvcrdnyu6YGVXl5rDFLBn0+97hNtijzGzWQRV0N/mUrrsJLluzOxY4DzgTe6+IaeyZaXbNe8AvAr4gZk9SNAmu7wCSekkf+s1wHJ33+TuDwC/IggWwyrJNb8XuBLA3X8MbEswOV2VJfr/vpu6BIefAvua2T5m9iKChPPyyDHLgdPDn98KrPAwuzPEul63mR0CfIUgMAx7GzR0uWZ3f8rd57n7fHefT5BneZO7TxZT3NQk+Te+jKDWgJnNI2hmuj/PQqYsyTU/DBwDYGavIAgO07mWMn/LgXeHvZYOB55y98d6PUktmpXcfbOZfQi4kaCHwyXuvtrMPgFMuvty4KsEVc77CJI97yiuxOlIeN0XAdsDV4X594fd/U2FFXpACa+5chJe943AcWZ2N7AFONfdh7Z2nPCazwH+t5mdRZCcfs+wP/SZ2b8SBPl5YS7lfGAEwN2/TJBbORG4D1gH/FVfnzPk35OIiGSgLs1KIiLSAwUHERFpoeAgIiItFBxERKSFgoOIiLRQcBBJmZntaWYPmNnO4e9zw9/nF1sykeQUHERS5u6PAF8CJsJNE8BSd3+wsEKJ9EjjHEQyYGYjwErgEoLZUA92903FlkokuVqMkBbJm7tvMrNzge8CxykwyLBRs5JIdl4PPEYw0Z/IUFFwEMmAmR0MvI5g1tez+llsRaRICg4iKQtXEPwScKa7P0wwueFnii2VSG8UHETS9z6C2W2/H/7+ReAVZlbphZSkWtRbSUREWqjmICIiLRQcRESkhYKDiIi0UHAQEZEWCg4iItJCwUFERFooOIiISIv/DyKB62pJaB0GAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import scipy.stats\n",
"\n",
"x = np.random.rand(100)\n",
"y = -10*x + np.random.randn(100)\n",
"corr = scipy.stats.pearsonr(x,y)[0]\n",
"\n",
"\n",
"plt.scatter(x,y)\n",
"plt.xlabel('X')\n",
"plt.ylabel('Y')\n",
"plt.title('Correleation = '+ str(corr))\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2de5wc1XXnf6dbJalHEPUQKzYaJERsr+SVZSSjgBLtJgbbCFsGK2CsxXjz3LDefLIbBDsbOWZBxDhMoo1hH3nxWXvtLJiIhz0WxkR2FmUT4xW25JGQFSTHBJBoYaMYBozUknpmzv5RdVvV1fdW3aqu7qrqPt/PZz5S1/PW6557z5OYGYIgCMLgUcq6AYIgCEI2iAAQBEEYUEQACIIgDCgiAARBEAYUEQCCIAgDiggAQRCEAUUEQJ9CRM8R0Xu6dOwDRPSubhxbEITeIQKgSxDRR4hoNxG9TkQvEtFjRPQvsm5XXIjoc0R0h38ZMy9n5r/JqElWENEmIvoBEb1GRJ8lojkh276biA4S0Qki2klE5/vWzfH2f8073k0x9h0hoi8T0ctE9AIRfSyw72VE9B3v2P9IRDcE1v97InrWW787+P4Q0TuJ6G+9d+yHRPTb3vLF3jL/HxPRzb59P0JEzxPRcSIaJ6JzfOt+yzvfKSL6XOCcS7xj+Y/9n22v2bfdL3nH+Te+ZVUi+jwRveT9bQns80ki2k9EU8F1Ufcr7NhR94uI1hPRN4ho0nsH/icRna27rsLBzPKX8h+AmwC8BOBqAPMAOACuBLA1wbFm2SzTbPMcgPekcC2fA3BH1vc0ZpvXAfghgOUAhgH8DYAxw7ZvAPAqgGsBzAWwFcAu3/o7Afydd5y3AfgBgCss990J4G7v+V8I4GUAl3rrHG/ffwuAAPwMgNcBXOitvwTAcQAXeev/HYBjAMq+c78E4HoAcwCcDeBthmu8AMA0gCXe7+UAfgzg5wGcBeALAP7St/3VADYA+FMAnwscawkANr2DYdfs22YYwEEA3wXwb3zL/xeABwEMeed5BsCv+tb/MoD3AfgygC2BY0bdr9BjR9yvjwC4wtt3GMBjAP4s6/c8lW8l6wb02x+A+d6HfG3INnO8j+So93c3gDneuncBeAHA73idzf/WLfO2/QCAvQAmAXwTwDt853gOngCAO9Pb7L30PwLwAIBzfNs+6B33VQB/C2C5t/wGAA0Ap71rekRzbJtruRluZ/Wi6aNL+Rl8AcDv+36/G8APDNveAOCbvt/zANQBLPN+HwVwuW/9J+F1lmH7wu1YGcAC3/p7fM/ujd76Id/6bwO4zvv/RgDfChybAZzr/f59dSyL+3EbgJ2+378P4Au+32/2nvHZgf3uQAwBEHXNvmV/BuA34QpmvwD4JwA/4/v9uwD+TnOee9EuAKLul9WxdfdLs/5qAPu7/R734k9UQOnzs3BHg18K2eYTANYAWAl3lHQxgFt8698E4BwA58PtZNqWEdEqAJ+FO4L8SQB/DmC7QdXx7+GO6H4BwEIArwD4Y9/6xwC8FcBPAfgOgPsAgJnv8f7/h8x8FjNfmfBa5gMYAfDrAP6YiIZ1N4WI/sSbZuv+ntLtY2A5gH2+3/sAvJGIfjJqW2Y+DldQLvfaea7mWMuj9oU7CoXvX/X/t3vb/hDA/QB+lYjKRPSzcJ/tN7xtHwNQJqJLiKgM4NfgCvsfeOvXAHiZiL7pqTQeIaLFwYsjIgLwSwA+H3LNz8AVAP9Mc39MPO+peP4XEb0hcK3aa/baczGA1XCFgA7jvhFE3S+rYxvuV5CfB3DAsl35JmsJ1G9/cKfk2tGmb5tnALzf93sdgOe8/78L7sc417det+xPAXwycNxDAH7B+/9zODNKfxrAu33bnQt3ZK8bxVXhjpzme78/h4AKKHDsqGup+88DdyawpsvP4Bl4ahrvt+Nd0xLNtp9BQD0E4AkAvwJgkbef/76/13d9xn29/38DwH+HOyB4J1x1yCHftlfCVVVNeX+/4VtHcEepDW9dcAT7Pbgzv5/xjv/fADyhub5/CXf2dpZv2f8B8LHAdjUA7wos080AzoLbgc+CO4t5CMAO33rjNQMoA9itnj/aZwD3AvgiXHXWW7zneEpzTboZQNT9sj122/0KrH8v3AHUP+vmO9yrP5kBpM+PALyBiGaFbLMQwPO+3897yxTHmPlkYJ/gsvMB3OwfJcPtsBainfMBfMm33dNwdZxv9EafY0T0DBG9BrdzB1wdsw1R1/IjZp7y/T4BtxNJBSK63me4e8xb/DqAn/Btpv7/Y80hgtuq7X/srQPaj6WOE7Yv4A4GLgBwBK7AvheuSgxEtAzAX8Idbc6GOyr/T0S03tv31wH8qrd8NoCPAvgKEal7WwfwJWb+tvde3A7g54hofqA9vwzgYWZ+3bcsqt1GmPl1Zt7NzFPszmJ+C8DlPqOo8Zrhqn2eYuZdhsP/B++6/gGunv9+375RRN0v22Pr7hcAgIjWwFUvfoiZv2fZrlwjAiB9/h+AU3BVLiaOwu2UFYu9ZQrW7BNcdgTAp5i56vsbYub7NfseAfC+wLZzmbkG18D1QQDvgauqWeLto6bLurbEuRZriOjPNN4Y6k875Wbm+9hVT53FzO/zFh+Aq45SXAjgh8z8I80hWrYlonlwdeIHmPkVuHaL4LEORO3rte15Zv4AMy9g5kvgCtVveZu/HcD3mHkHM88w8yEAj8I1cgKuSu0rzPw9b/1feW35OW/9U2h9Nm3PiYgqcA3UQXVGsN0/DdeWk6RTU+ctWVzzuwH8oudJ8wPvWv6IiP6Ht+/LzHw9M7+JmZd7x/wW7Ai9XzbHDrlf8FSu2wH8GjP/H8s25Z+spyD9+AfX6PlDuEJgCK4K4n1wdemAO7X+JoAFcD+Qb8BTs8AznAaOp1u2Gm7HfgncznoegPXwDHloVdNsgjvdPt/7vQDAB73//yZcXelPeMf4E7gf9Vu89WPwGQw1x457Lc19u3j/r4Cr+/3ncFVaj8PsBbQArvH7Grhqiz9AqyfPGID/C9f7YxncTuUKy33fBlfloEak/wTPQApXULwO4DLv+b0ZwPcB3OCt/2W4HfJPe+vfC3f2pIzTl8FVRaz03q+7EDBqwhXuzwGgwPLlAF6Dq+6YB3eU7vcCmuVdz51wnRDmwlPjee/bUrgd6E8C2IZWA3PYNVfh2oTU3zfheszN992Tn4SrKnqft+9y37Edry1f8N67uTjj5RN1v0KPHXG/3g73e96Ydd+S+reSdQP69Q/uVHg3XNe0H8Ad3f2ct07pbF/0/v4bPD0zLAWAt/wKuJ4jk95xHoReAJS8D+0Q3Gn+M/C8ZOCqY77sLX8erkrCLwDeijOeRuOaY8e9lua+Xb7/N3kf7WtwXQDn+NYdAHC97/d74Lol1uEKyiW+dXPgGttf8453U+A8YfveCNcV8Thcwbg6sO+H4bpC/hiuOuIPAJS8dQTg9wAc9tY/DeBfB/b/d3B1968AeATAosD6HQjYiXzrPuId+7j3/P1eYVu8d8D/t8Vbdx2AZ739XgTwFwDeZHvNgTb8DVptAB+GO3s84b1z6wLbf07Trl+xuV9Rxw67X977MwNXYKu/A1n3MWn8kXeBgiAIwoAhNgBBEIQBRQSAIAjCgCICQBAEYUARASAIgjCghAUr5Y43vOENvGTJkqybIQiCUCj27NnzT8y8ILi8UAJgyZIl2L17d9bNEARBKBRE9LxueWYqICKaS0TfIqJ95BYYuT2rtgiCIAwiWc4ATgG4jJlfJyIHwDeI6DE25wkRBEEQUiQzAcBuBJpKuOTgTMZGQRAEoQdk6gXkZaLcCzdF8NeZ+UnNNjd45d12Hzt2rPeNFARB6FMyFQDMPM3MKwGcB+BiImor0MDM9zDzamZevWBBmxFbEARBSEgu4gCYeRJuLdErsm6LIAjCoJCZDYCIFgBoMPOkl4f7vXCzIQqCFeMTNWzdcQhHJ+tYWK1gdN1SbFg1knWzBKEwZOkFdC6Az3v1O0sAHmDmr2TYHqFAjE/U8PEv7ke9MQ0AqE3W8fEv7gcAEQKCYEmWXkBPAViV1fmFYrN1x6Fm56+oN6axdcchEQCCYEkubACCEJejk/VYywVBaEcEgFBIFlYrsZYLgtCOCAChkIyuW4qKU25ZVnHKGF23NKMWCULxKFQyOEFQKD2/eAEJQnJEAAiFZcOqkZYOf3yihrVjj/elQBCXV6EbiAAQ+oJ+dgvt52sTskVsAEJfEOYW2kvULOSCzY9i7djjGJ+odXzMvFyb0H/IDEDoC/LgFtqtkXoerk3oT2QGIPQFabiFdjp679ZIXVxehW4hAkDoCzp1C1Wj99pkHYwzo/c4QiBqpJ5UwOTJ5bUbKi4hO0QACH3BhlUjuPPqFRipVkAARqoV3Hn1CmvVSxqj97CReicCptNrS4s0hKSQL8gtzFUMVq9ezVIUXugGF2x+VFuOjgA8O7be6hhBGwDgjtTvvHoFtu44hJpmhjBSreCJzZclbHVvWTv2eOGvYVAhoj3MvDq4XIzAA0JR/MizaufCakXbucXRs4cFp23atle7T5EMuWKM7j9EBTQAFGXqnmU709Sznzg91Wz/lu0HMD5R6wtDbj9cg9CKzAAGgKKkTu5mO9XMojZZR5kI08wY8Y3Q00gtMT5Rw+hD+9CYPqNMmqw3MPrgPmy8eBEe3lNrUw8VKXfR6LqlWhWX6RqKMuscZEQADABFmbp3q51B3fy0Z/cK+ukHU0vEZeuOQy2dv6Ixw9h58FjTFlDUDjGOkJTo5WIgAmAASEO/3Qu61U7dzEKR5kwoTFAdnax3LGDygO01FGXWOeiIDWAAyJMfeRhh7ezE/zxqBpHWTChMUOVN2Habosw6Bx2ZAQwARUmdbGongI7UCaaZhX99XHT67dF1S3HTA3sxo/EnvXTZgtjnKDJFmXUOOiIABoSiqB907Vw79nhH6gSd8VKRZCZk0m/fefUKzK84eOVEo22fnQePxTpH0YlrMBayQQSAkHs6VSf4ZxYmL6Bbxvfj/iePYJoZZSJcd8ki3LFhhfZ4YfrtSU3nD7hCYu3Y47mceXWDosw6Bx0RAELuSStIy9T53DK+H/fuOtz8Pc3c/K0TAmECqTqknwEAg+cJU5RZ5yAjRmAh93TbiH3/k0diLQ8LiIrKrCJ5/IU8IQJAyD3dToY2bei1TcvDBNKrdf3o3494wgh5ITMVEBEtAvAXAN4IgAHcw8z/Nav2CN0jjYjQbqoTlE1At9zUFkCv3zYlffMjnjBCXsjSBjAF4GZm/g4RnQ1gDxF9nZn/PsM25YZOOs04+3Y7XD+vEaH+6x6aXcbx0+0eQtddssi4v0kghXkcAeIJI+SLzAQAM78I4EXv/z8moqcBjAAYeAHQSacZZ99edM55jAgNXvfx09MolwgzMwwGIr2AwgjODuZXHBABkycahfKEkTw+g0EuvICIaAmAVQCe1Ky7AcANALB48eKetisrOuk04+zbi845iQtnmp2P7li6656e4cR57f3nqA45YAZerRerw/fTjYGBCJR8krkAIKKzADwM4EZmfi24npnvAXAP4BaE6XHzMqETv/c4+/YiXD+uC+ct4/tx367DzeIsnXQ+po7MpJ5Jct3Bc/hdQPOi7opL2gODvKoBhYy9gIjIgdv538fMX8yyLXmik7zrcfbtRX73OC6c4xO1ls5fkdR10tSRmYy7Sa47LNGcOl/ctmdddzftgUEa5TaF7pClFxAB+AyAp5n501m1I490EkYfZ99ehOuHecwE1QKqkIqOJJ2PaZ9pZlSccqLrHp+oYcv2A5i0cPeMaofp+FmPltPO4yOJ4fJLliqgtQD+NYD9RKTq5f0uM381wzblgk7C6OPs26twfZ3HTDD6thuuk6aObMRnC4hz3eMTNdy0bS9mErTDljwYzdMeGEQJFLEPZIcUhRc6Ju4HPD5Rw42GGrk6CMBdG1d2bANQx2KcEQKAvQBcefvXYo38k7Q9jeL0il65EtscSydQ7rza9bIyrRMhkB6movAiAISOCPu4TR/w2rHHI0f8CgJw/ZrFsV0ydSUgVeevcEoEEFqqeDllwrzZs7RePEs2PxqrDYrnYnTcYfdmRNMRmzrqJM+lm+jaCQA3P7BPG4SX1CNL0GMSAJl7AQ0K/TrNTaKyiNL9qg47qT++rgRksPMH3FKNQRrT3Bzlx9G/m6KJR2KqrkbXLW2rK6wItidYg7g2WcfoQ/sA5EOV5CeoBlTPyJRuQ+wDvUFyAfUA9bLXJutgnPmQw7w74nqCZOU5ksTAF6UTV53CNDMe3lOLfS26zi/pPNfvrTI85Bi3u+6SReklrAtprL89tz9yoE1QNKYZtz9yIDeGV9N7GeU9JekyeoMIgB4Q1w0ursBIImDSwvShMmAURKPrlsIp610xg9Qb07j5gX2xBFvanZw63m1XLte2+6OeiiqNhHVbdxzSzkx07TGlnX7FizrW0cuONey9DHtGTpkkXUaPEAHQA0wvuyoSEuzU4gqMrPysxydqOH5qyrjeJIg2rBrB1g9d2DKirlbMo+tp5liCzdTJ2Ykc8/FUu/2d/N0bVzZVVBtWjeCJzZfh2bH1eGLzZYlULTbCy6YTz0Md6LD3Muwa5s2e1Rfq0SIgNoAeEFaTVqdnjjt9z2K6rzMy6jDpnU2lH6OMwzZ6bJMb4zUXjWDnwWMthuEogp2mrt1p2nei6hf721OtOFqvpGrFyUVFLtN1HJ2s466NK42eYDYptYV0kBlAD9CNxvwER+txp+9ZTPejdLh+bAXR6LqlrmdOh8cz1Q+4Y8OK5rOw6fxt1Dhpq99074q6I6o9gCssdZ2/UyJsuWo5gHRmJH7i2JnGJ2rGGdfCagUbVo0YZ339oP/POprbFpkB9IBgTVod/k4tbiBOFgW448wu/B902Gh5w6oR3P7IAaNuW3c8E6Z0zTaCK+guGdbmtL1tTCN3tezGbXvbPJr8sQ2XLluArTsOYdO2vamO+uNGKG/dccgYz6CuZ8tVy/uycHweorltEQHQI1SHZFJz+Du1uNP3LKb7UaoKP+qDtvkwTEXVFZ12EDYuqMHOP6zN3VC/mVwmVRuCHas/sK1bHU9cQWe6fva1JQ9qqm6QNxfcMEQA9Bjb0XrcCli9LsAdVfjEz+7nXzbOfvzqL9OoUaELhIpLlOAKqoaiPua08+bosJm1HJ2sd7XjiSvowtJw+OnHwvF5ccG1QQRAjynKqCfKsGmj1lLoMnz6iUrTbIpgTWJ8tRFccUb4vVC/2XoGddLxBJPcDQ85uO3K5c37GVfQZaGWzAu9GBSkhRiBMyBonAOQK4ORrWFTXcdzY+vx0TXmYj1R5tYykbFDNhlikxpflYE4zO3UPyuJMrDrjjfXKTXbmMZzjeo4VMea1BlgfKKG0Qf3tRiVXznRwOhD+5ptjutWajLE522g0w3y4IJri+QCyhibhGW9/mhMdoqo/Cyrfu9rkQbcIE6ZtGkPgDMJ0ExVveK00ZSLxuSKqM4dLFCj2uzPF3TpsgV4eE+t5Rk6ZQK4Nd1E0lw8tu9I0vw/UfmH1P3s13Qm3SBv90qSweWUKN/3sA+4Wy9Z0oyUwRTPUQwPOXj95JQx8lVn2ATQlss/qo1hHaPJ68iUQA5wp83+lNC6bUyUiTDDHPq8dOqY9e84FzsPHot81kneCdPzVteme+Z56+BsKGKb00KSweWUKP2syYin804ZfWgftmw/0HE92qQ6zJ0Hj2mXBztI1flu3XHIOGNQU2aTYdPU6eraaDrG7Y8cwOsn9ZHMyhisO0ewHkCcIZQ6rslDR6lj/ELxlRMNbPv2EWz90IWRzzOJUTXMMK67n0WsGVwk18xeIjaAjLExDOmEhK5TU5ksOw1ISqrDDHP90+mCw4Rf1Da6Ttcp6XPImI7xyolGZN6dbqJL12HKBdSY5q6l9jAF4Jly8iRJPRJmD+lFLispS6lHZgAZY+OVohMSNp4dUS6AplFXUk+lMNc/nV7etH2ZCJu27cXWHYcw35DuQMfsWSVtG+PELPQa9Rz99Quitk0bdc/CvIBs2mFaHjX67oXffJFcM3uJCICMCbpT6tQlulGYbaeW9KNMokpII4IZaFWTOGVCiQCbgfrx03ohamrXnFml2BW+nDJheoat2mNDdcixzqvUTTfCOM/bJJTnGzyrojr4XnTORXLN7CUiAHKA/+Oz1YXaBmKZXvCojzKJTjYsjcHasccjZxolTYI2k4eQDf5rmF9xMNcpYfJEo6Vdm7btjdThB1MtbPvWEcyk5Dzxar2BLdsPRD7HqBTJvTRwkiHJj2l5VAffi855kOMSwhABkDNsR2LBzrOq8agJe8HDPspODGZRaQx0Mw11HZ2qafy++MHzTtYbqDjltvq8UbWJg664a8ceT9VuMMOInIWEqWOA3hs4Tek6XjnRwNqxx9uET1QH34vOuSgBmL1GBECB0XW2ti942Edpo5O1PZfNTMM2pUQY/iyYALSjap1eeSRElUZAm+2ilzpj27q4UQbOtDu9uOnNozr4XnXO/Zh2olNEAAwAus467KPcZBgV+w2WtiPOqOl/nLTSfqoVB/PmzNJ2GOMTNeOoujZZxwWbH225DyY1kE4FYWN7sbVZRGE7Ag4rOJTmzMBvqA6LfQgKWpsOXjrnbJBAsAJgM9o2BTtdc9FIW5Sq8sMH9B9lVCRwnEhh07bDQw4mbr08NAgpDFWGUV27/zpOnJ6yikhW92H38y+3Rfua7pGyAUSpgWwLzoTxXEjQnR/TPQ4rVG8zs/ATFo2sIypoUOgtuYwEJqLPAvgAgJeY+e1R2w+iALAN70+zE4hKPRCmMtFF4Y4+tK/NmFsCMH/IMXbUREDYq6mE26NPvRg7/YSfasXB3tsuN6aKCN4Hp+TeT5sRfpwIYR0mARBsqy4VRZxoaZsBRi+EjNA9TAIg60CwzwG4IuM25BrbABaTGsA0Cg3TZfsTeQGtHZma/uvQqUw2rBrBvNntmsYZmIuaOyUK7fwB9x7ct+twR50/4BpgxydqLQn6VATyjdv2tgfbWbqADg85uH7N4rZ7VXHKuHvjyra0yEHmzW4NxFOBVEs2P4pN2/a2BE09vKeGay4aaQu2M50jWKDHJggr7P0qSuIzoZ1MbQDM/LdEtCTLNuQdWx/psKAqnRAw+WwrlE5WN/Jj6NM7+Au/+EeUcXztR2KocNKauwaN22kYpZmBOzaswOrzz9GOrqO8j37xnSNGnXvwuuuNadz/5BFtjqEo7xrbIKww28dcp4Q5s0odpyARek/ujcBEdAOAGwBg8WJzyuF+xdZHOqwQuk5nffz0VHPkG0ZUeodgxxbMZRPHtVN53Vyw+VHrfdKgNllvxinoYhGSoAqb64ybql5u2Fnu3XUYX3jycHO2EdWisBxDYeod2wHGpcsWGOs6vHJC72KrY5ATsuWRrFVAkTDzPcy8mplXL1iwIOvmRJJ2MWjbvDym/Ot3bFiBs+a2y3nb3DKmYJzhIf0MYsv2A4n95NW5sojOVCqQNDp/IPwaoiqfKZJ6EvlVhBtWjTRrBaiqYf530qaGwPhEDQ/vqYW22Savjo26qSjF1PuF3M8AikQ3AnLComv9+ferFQdbrlquNbyZAndsfNp1MwunTHj95Bk1jf8646ZWUPiF2ui6pZEqkjwTpgMfn6j1JC+RrcuuTRCWratuMK9RcJQfNybE31bVDpk5pIsIgBQxveA3P7APQGdCoC1lcMCzZrLewOiD+vN0EmofjNQtk76ASyeZFYeHHDC7aRm2bD9gTCmgI6iGylpwhEXtqg6uF6hnG9XpdqIm0p0zrBNPEhOi0nafbMxIKucukKkKiIjuB/D/ACwloheI6NezbE+nhHlKpJneduuOQ9pOuDHTqtZR02md504cTw01Uqw45VAVydHJulE1pKPilPHRNYtxsjHTTGM9WW/E9uy5a+NKPLH5MmxYNRJLeNgQ9wMZmj3L2CklDXqLi//Z2uj4lQfUXRtXAnAFsV/9YjNQILh2gjCBE6VuCkvbLamcu0OmAoCZr2Pmc5nZYebzmPkzWbanU8I+lDRf2LARWXDqr0b+ynMHiF+fdXyihpsf2GeVeO62K5e75RAjUG344p4XOuoUa5N1bNq2F0s8nfGslAVAsPhLFDbPRscbz54d80x6hoeclmdreidLRC169jD9vM4OVQ7UD2AAD+8xq7eOTtYj7VlxbT+Dnso5DXJvBC4SuhfcT1ovbNiHwnCDdm5/pD0XjvLcUaNlG1THEGUcrTjl5giwMc2hI/HhIQdPbL4Mu59/GScacbvYdvwxCikcriPCnk3YullldzZUTjiFqVYc3L1xJSZuvbzl2V66bIE2bmOauaWj170vflVR0MHg7Dnt2uN6Y9rY/oXVitFRwZ8zSCcgqgaX5UFP5ZwGYgNIEfUi3/zAPm2HmdYLO7puKW56YK/RSyTNoiI2aguVJtkfjRomL5RR+v4nj8RqS95xSoQTp6dacg35O+MwG8XRyTru2LCimd5CV4zehIpmDmLjvQO4HbfpGav3JWiHMrnqqsCwsMRvpsFHmMODpHLuDiIAUsY2AKfTc5iKmUcRJYT8wUdR+WycMjXr1K4de9xalaPakJbLZRKGQ9JQ2KDz42/MsNYzyl9fIQy/4FCCIEoIEIDlC8/W1ltIw+YQprc35YNSkdRJPHbCBIR4AaWPCIAu0Iv0tibXzjCihFDQgyOyg2Zg9/Mvx8rl729DGgnTkvLKiUZHQsCm1X67T1R0sV+NpQTHzoPHIs/DAJ545uXm79pkvekN1qnKMW41N7V9NzJ7SrbQ7iDZQAuKKTmXn4pTwukpxjQzykS47pJFzZFl0mMGiYpoHR5yMDR7VsuMYnjIwcnGNOpdUNjHScDmlAgzAKYNurQ0BBQhWU1i5d6a9OwqXXbSmINgIRwdEtVbHHKZDTQuRRIAST8O2/2ictY4JQKotaSiP6On7rhJUzObcMqEebNnYbLe6Dgzpg3VGAXkFRWnhJNTM02bxZBTwtUXndeWXTNp+zvZr9Ni9ndvXJkor1GZCM/c+f7E5xXyR16zgfYlthkWk+ynfPs3bduLObNKGB5yQHBH2hXnzOOcZm6LFbN9N0EAACAASURBVAiqGYLtSdOrYnjIAXzlDnvR+Z+aij+jqDdmWgzWDMJX9r2o9aBKQtL9lPAPesXE8REKet3YkqVtRugtIgC6gG0K57j7BQXEZL2Bk40Z3LVxJda/41yc9KlUovLI1BvT2LRtb4sQGF231J05dMhItYKh2bNSrZ0bxWS9PVgoCfXGdOJ0Fmly9NU6bty2F3OdEqoVp+k2ef2axVZxFiogzx/kZetiGpWqWugfRAB0AdsMi3H3MwmILdsPWLsM+mEAow/uawqBDatGtInj4qAMgd0I0ln75nNSP2ZeUYPwV040cGpqphntDEAbBe7HKRNuu/JMfWSVodVmZC/ulYOFCIAuYJNhMcl+pk5VpVFIQmOGsWX7gWYGxk4LrFxzkeutkXaQTrXi4LkfDWbkp5oFjk/UcN+uw9ptPJMPRqqVpmuuwpShlcgtrWkKzBL6H3ED7QI2GRaT7NepUdDEZL2Rmtrj4T01rD7/HO21KObNLuP4aXt1DQHYctVyY7H6XpBWofekqFTOpibMsGv01XXepmeritYIg4vMALpAVMh70v1MofJxErB1G3/6gGsuGtEmoZs9y/61IwDXr1mMDatGYu2XNjOMtnvvlKhn917l8w8ji+Rovc7fL/UC0kVmAF0iaeBKklD53c+/jHsNqoEsUB2VLpApLO2AQrlO+mMXxidqibx80kIX4XrpsgXYefBYx2qzKFSmzZ0HjyVK82GavXRq749T/yKNmIFu1NsYdEQAFAydgEg68qtWHBCZi7MnRWWa7NR1cpoZ9+46jK/sezH1NM9xuXTZgpZ7n1btYBtUps1rLhppi0/wY7K7mFRXnaq0bOsJp9Vx255PsEcEQB+QxONG6dUBtNTwTYPozKGlWFHAeXDL3HnwWMvvOHl2nBI6zlKqCr9fd8kiPPrUi21CW2VjDeYE2v38y4Yjtrp7BkfoasYRNmK39XYLK5S0adte6xlBUu86wYzYAAqESf9pGvmZ0ugC7qhSVSqzdf2sOKWmfWJ4yAk9vgmnRDgd4caYhG77rvvrLMRJmTFSreCnfiKdtk0z4+E9Ndx25XLcvXFli61IzQ78QYSjD+4zqgYJaDoX6AIQ7911ODKQ0dbbLaxQUpxAyaTedYIZEQA5Icq4FbdgR8UpY8tVy0M7RlWpzFYFdLIxgyc2X4Znx9Zj4tbLseWq5bHy11crDqaZjbl3OqHbdXbnV5y2Ijs21CbrqbbNr/JQz+KJzZdh58FjbaPssFkdo9WmFDWb0QUyXrpsgXbb4HKbDtomUDKqoIwQn4ETAHn0IrBJARGl/zR5D42uWxqaBiCsiEeQhQGVgU2hGD/HT09l6krZCT8+NaUtmpIFuhF1EjWIev9tBVTwHEG1mGl5VKEk0/GDJPWuE8wMlA0gr14ENsYt08dRm6xj7djjGF23tBkp6mfDqpFILyFdEY8gfpWBqc1hlCg6gjXPTPty/WeNMrL7dedJYkRqk3VjgRodtqqd4HL/TCOsjTYzBZ0ThGQlTc5AzQCS5ujpNjYfUtjH4Z8x6GY4d2xYEaqvVyOpMJ92v8ogrM06nDJZj/xHqhXcvXFlR+URi05UbIFOd94LNUjwHHF08kplZVJJBgcYtiRNvNhN8qhlMDFQAiCvXgQ2H1LUNFrlBDJ9DK+GeNKoD+9kiKtK8MO1NbzNm13G1g9daLXt3b58Nw/vqbWol5QoyFPQWzcok5vHx0ZlArTOFOfN1u+j0kR0wvCQ0zaqTqKTN31rwQGGLXkb1OVRIIUxUAIgr14ENh+SX/9pQpcRU30MYZ5CUeUDdR+1rV5XjfyjPIb8HYyuLaqOwcStl/d1tsppZmzdcQjXXDRifZ2qU3XK+s95ht13PKnwrDjlluRyCludvH9EXDLM6pI+07wN6vImkKIYKAGQVy8C2w8pahpt4uhkPdRTSG1jwtSWKIEEnHn5t1y1PDTV9MnGdHPKbNIT1ybruGDzo6hN1jse0eaZ2mQdD++pRRrwFVWvYw+b5dUm63jlRANli/Bfp0wtKajDDK1BbyRd5+8fEeucBjr5BvM2qMubQIpioIzAvajVm5Q4qSNMSePmOiWtoXJhtRJ57WFFvk1GN1XmEQivfHV0st48xqZte7XbqcCwKEMmB/7tFKfkln3Mm3dSvTGNTQ/o71WQ109OYXyiZmUInp7hZi1k3TMbHnKw/h3nYufBY3i13sBxz/spTsCWH9PMskyEGeaOv8GkiRdtiWtgNj2DpAKp2wbuTEtCEtEVAP4rgDKA/8nMY2HbF6kkZLcJdsKq1u7rJ6da/L8rTtnKVU6X2kBXQjJJCoSRaqWp21+y+dFY19lNRqoVnDg9lRvvnk5Qz8jm2ajnYfsO+bF9nxSmlCAE4Nmx9VbHiKJbnaTuXY+6/iT7pHl+E6aSkJnNAIioDOCPAbwXwAsAvk1E25n577NqU69I64U9fmoKwJlpterIomr/6gi66vlHh3532Sj3z+Co0ikTjp+aarotdoO4dXedMjVz5l+QI4HUCf5ZVpS7pVJHqO39nUyUMIybeyftEbGOpIkXo0iSeyhNLUMvch9lqQK6GMD3mfkfAYCI/hLABwH0tQCIG4twy/h+3P/kEUwzN7Njrj7/nNCRHuPMNDjOi6I+JJ0eXuVuiQr8UoLn6GQdVW80qXL5dCNaV6kSbBkecnDblcsjVV9FY2G10jKwUGoe07aKuPEcQDx9drdVNN0kqT4/LYHUC3tClkbgEQBHfL9f8Ja1QEQ3ENFuItp97Jg+8rBIxPESuGV8P+7ddbjZ6arsmB//4lOxQ/fj+CaH5W6JMiEq9cKzY+t7Uhd42tMj21CtOJg80WhW1wLsvZnywvCQo21vbbKOTdv2No2tJoOvU6KWzjdJZ6KEjc37VOTo3awNzL04f+6NwMx8D4B7ANcGkHFzOiaOVL//ySOaLc8YTG3PFXfWETYqZphVLoTWyOReeT4cnayjXKLIHEP+mUjw+m9/5IB2xNzNSmBOmbDxZxaFpnhu2b7kxgjsfv5lbQ3o4G/d/Qi+OXFnQCrraJz3qajRu1nPXnpx/ixnADUAi3y/z/OW9TVxpHqcPDs6GG6+F10OmzDf5NF1S0NdNk2t8tsMbjR4+3QDhtvZzS7bO4f6r3/DqhFM3Hp5W4bNuzeuxKc/vLIrEcmqdu8dG1bgzqvDI7UBNxPr1mtdu4Wu0I4t0zOM2x850PytmwH53UCrFQfDQ60uoV/Z92JHvu5FCZbKevbSi/NnOQP4NoC3EtEFcDv+fwXgIxm2pyfEkerKM6MT4lSQ8o/KiuhoHzfNtIor8I9AdR9XnHw5NhDQkrdJBeKF1z0480A6tVn4ZzpxjZbjEzVjO21nfEUq7NItA3Nezm8UAET0VQC/yczPdePEzDxFRL8FYAdcN9DPMvOBiN0KT5wP7rpLFsUq9TgSczqvy+7Z/DALr2yzwz8CBfQqDCK3gHqa51Rqsqhkf4p6Yxo3btuLLdvT/0RMnYxOTRM2yrfVTRctWKqfMcYBENG1AD4F4PMA/pCZM3eWHsQ4gKAX0JxZhBMaG4AyvtqWYnTKhHmzZ+HVegMLqxUcPzWVi8pbWeKPV1CMT9RSnwEo/O66vbz/1YqDLVctDx2EmHzQw2wVd29caTVaNUV76+6/kA6x4wCY+UEiegzAfwawm4j+N3w2JGb+dFdaKrRwx4YVuGPDiuZv04epVEgmo1614mDenFk9c88MkoY6q9soA7a/U+zGiFvht5nYpGhIA6dE+MCF50YacU1qGhO6ZHFB/IFnQUeCoriG9htRRuDTAI4DmAPg7MCfkAFRhqGwnD+9dM8MsuanhwvhbhksqdirUXkaVdJcF9HwT3rjxYu01cOCRtw46hhTsjg/wWpqypsM6L5xtUjpmXtNmA3gCgCfBrAdwDuZ+UTPWpUz8uayFmYYsrExZKFr/c7hV3HNRa4HS1ECr2yEpArNB4CbHtibSU6hilNu1gSOchHe9u0jxsI8wfoTNs/JNto8LMNrN9U+eS0ClRfCvIA+AeDaQTDMhlHEFygoINQISAmE+RWn5/r+emMaOw8ea+agiZtPKK+cNzy3JdFdrxnxGWdt7mdjmo3quGD9iahnFPRmCiMrw2+RPI6ywDhfZOZ/OeidP5A8v3depp06n+vjp6dC/fyjSLqnf0Q5Z1Z/ZCL/h5eO45Zxd0AwZCjIArgd9do3n5NaTEHFKTcL6GxYNRKrI1UlQIPHi1t/Ik5EapKo1jS+IfE4Cif3kcBZk+QFytOsQSfAGtNu1seh2bOas4JLly3Atm8diVR7OGXXJ9IyGLmN5bf+FY6fbm1PCcD8ITdNQ6kAxuIgylU3eF2KasVpjqg7ubYhp4R6Y6b5vLZsP5DIQ2nIKaE+Nd3y+/cNNR8AYPTBfW3vhVOmSKOtX3VaHXLglKgtU606RlDNeumyBS0R0km/oV4koysy/TEM6yJJRi55qgpkElSTJxothTzu2LACW68NL904POQAjMSdP6DvJGfgBieZCoYUgbB4jVfrjURJ14KcmmI8O7Yeo+uWYtu3jiRS4xGAE42ZlriGE40Z3Lhtr3aUvXXHIe2gYN7sWaEdcXDm+cqJBkDQFprRzVLv23U4lW8or0Wg8oIIgAjSrHuahfHTJKhUMJL/g9+wylyGcKRaycR7qB9Y6GVH7ZRp5uZIOclzGB5yQvV3upQMpnaHVR8DzDPPeXNmtVUPMxmIdcS9j1mnc8g7IgAiSPICmTpdAmLrMTvVg4Zlu9R98GECT/Sm8SEAly5bYKyFGxe/K6UN1YqDuzeuxHNj63HblcsjI5qDo+ykGSnjqE7jvFdJVDdRZSsHGREAFsR9gUy1XBmINYVNI2lWlDEv+MGHCbys9KZDEb7tSffvRejVW35qHh7eU0tNtRVXjTRZb+DjX9yPW8b3N3XoUfg75KQqlDiCI2zAFPe8QjwGQgD02iNnw6qRVKawadkSlAAzdXj+NoXFPHSaOz9ptGu9MYOPrlmc+Lz1qXajRcUp4+csvHI6FRLff+m4daddgpt+Oo3z+qk3pnH/k0fs20HU/EaSqlDiCA7TttevWRx63rx42hWZvvcCysojx5SYLc4oOk0XtvGJmtHDRrVJd69UArItVy1v0dmavDX8BEtTAskyay6sVprpMFRepDgEN69WHHzgwnOtRuadjttt969WHBw/PdUM0gqru5CEOPdsmrnlG0mSkdImINE/2JhfcTDXKWHyRMMq2DJPnnZFJtOi8HFJkgwuq8RTaRR0TqvtNoFXw0MOmGH0LAlru664uClC1HRNps7OdF5VLS0JSfISlbyMoEOzy0Z3z6Q4JcJZc2dpC9LEFQKma0tyzd38Rjr9PiShXDxyVxS+V2QVCJJGcejRdUsx+tC+ltB9G/9roHV0ZeNb30kxcJsRYlQisDOpDM50CATgnYvnY+uOQ9i0bW/zHgLAw3uST/eT6ONnGFj75nPwxDMvG7dxSslcZBszbLz/cWcCumtzSoTZs0qxBZcuOV5ao+tOI3QlwCsd+l4AZBkIkkoxh6i6fxqCo6u0DJBRwW8mYRdsj781YakMGMA3n3m5JWvmph5WGgsS1vkD+s4/DTVOJ/sPOSU0ZjjRrEWV+ATSV7F02oFLgFc69L0RuMiBIDp/78YMRxqB0wg60mH6uEzeSreM78fascdx47a9xvZcumxBaCqDBPIvV2Td3lNTrE3+FmVk1gmuNIMZOy14XuTvOk/0vQAociBI0lFSN6bBTolw4vSU1uPCNJ2/b9fhSJ/1+3YdxvhEbaBHbhWn7AZpaeg0d5Bp9qeM8+qb+GjA4yatQCxA760zum6pm1bEh616Eyj2d50n+l4FBGRf1zMpSae5tql8bak4JUz59NRBdYDt6N20zdYdh7TZJ9P0gskz5w3PxTPHjrctN9lG4hBl/L3LUMXLZGSNK6hN3jrXXDTS8fSuqN91nuj7GUCRSTrNNe1XrehHmVGc1qgR/OqAqmH0asvRybp2RHf9msWpFpHJa537f3jpeFsdgYpTwp1Xu9XgrrloJFHbnZJbQtREWGBhGiqW8Ykabn5gn3Z2eP+T7YkHbdSbQroMxAygqCT1JDLtByDRKNs0gqxN1jE+Ueu4YLoaVepGdKvPPwdbth/oqH5BxSnhZGOmp7OJEqGj4jD+wi47Dx6zbnuZCDPMmO/FFejqR7eeR+9506kXmxr5m94d03Lx4uktfR8HILQH3BChGXATFsilCFMjRBUKbzlOidpKHzolwtZrLwztWEzqiDmzSpiZ4VwmqJuXQryA8ou39Xzy+9Gb7pkJ28peUfjdfcMIe6fSaotwhoGNAxh0gjrYyXoDFafcovtdff45oT7671w8v8Ud00+9MW0VZFQmwnUXL2ovSWih2zCNCk9NzbSllyiXCLPLFFka0X/6boiPNILF1OjcZNOpVhzMmzNLO0KPO5KO4+Zpcvm1rfQWZduQqN7eIQKgz7EJuPGrXkyFOcI6SVVhKuzDn2HGzoPH2mwJjWmODP4JM2oHZxTTM4zTMXr069csxs6Dx5rXm7d6xUcn67hr40pt1Kw/PUcQ07WECTyTOihY2OX1k1PNWZe/s7ZxPy4TNWcp/oGHbVuEdMlEABDRtQC2AHgbgIuZWfQ6XSLKlVQ3mvOH0q8de9xKxRO1TVhO/KjR6ui6pbFyCMUJfFM5hhQXbH40V55HC6uVRPp4nVeVGnnvPHjMKOiCzyI4qtdFLKvOOuo5BlM9qIGH6Z6LPaD7ZDUD+C6AqwH8eUbnHxjCXEltEmql8REq7xHTaM/vWnjL+P5mwrcyEa67ZBHu2LAiliHYNu9NRZMm+vo1ixPnGEobAprGe90szZ8eI64R19bN0zaoMGoGFabX7zSqNywKXQgnEzdQZn6amQfW36uXaWxN7nyXLltgdNG7+YF9zbZ16uIJoDnqi3ItVAneVOc9zYx7dx3GLeP7seWq5W37OiVqCyaqOGVcd8kiK/fRqRluu/d3bFiBj65ZnFrx9ijCzsJo14Hb1oiISs1x4vRU2/l0bp5xUjOYnq+/eL2OTlxO06iZMcjkPg6AiG4got1EtPvYsWNZN6djuvHCRgmUub6RbrXiNA1wYS56qm2vn5xq62TjMOJTYURFb97/5BHtMe5/8oh2340XL8JZc85MYqsVp+k7H9xWVxRG2R+C3LFhBZ658/09iRt4dmx9aBnOIDY1IsLeMbUuqMpR9y7YSc+3iB1xStQUMEmiczuJ6s1T/e0i0jUVEBH9NYA3aVZ9gpm/bHscZr4HwD2A6waaUvMyo9MsiEHC1DhAu9//qakZPPrUi9aum40ZxpBTwsxM/KRyqhyin6CvvxJeR73OSoc6b1ANors2EyZ/+LARbreNwmqWcemyBbhv1+E27yvdCNjGjhLVKeqe/bw5+iLvNhOhs+bOatPrxyXpfpIVtDO6JgCY+T3dOnaRSfuFjfux1xvTsdMKRAUTmWC4aZtXn39Oy8ft1/PboFPHRF13UCiavF/C9Mw6Q6oiDfdRVeQ96GVFAK65SN8hVoccrSHWr6pL8o6Z1k1GpAm33aZbSFbQzsi9Cqjf6DQLYpCwjz0Po6B6Yxo3btvbVE0F9fw2zJ5FbeqtsOs2pZaOW2M2WE9ZCaLhIcdKNRJFteIY27rzoF7dabpt/uVh71jc98/mvcyys5WsoJ2RiQAgol8kohcA/CyAR4loRxbtyIK0X9gkH3u14qSaYwc4k1nShFJN3RfDw6ZE7gta99I4+HXZYdcdlpwuiX76ic2X4bmx9Xjmzvfj7o0rcbIx01FqCsXx01PW7piKVw3n9S8Pe8fivn9RdaCz7mwlK2hnZOUF9CVmPo+Z5zDzG5l5XRbtyIK0X9gkH/uWq5a3jGyDHbf6PVKtWCWQU+eL8hiqN6at1CYj1QqeG1uPc+dXEFQ+KTVP2HWbhIMqF/js2PpQr5Qw0qy10Jhmo7cRA20GfVXXWYf/msPesbjvX3D7asXB8JCTi85W2Y82eTEid0V4GwntSCRwBqSZxtYmSMi0zhT9G3QZDJal9OP3796y/UDH1+MfUYapeaKuWxcElcZINW21WlgUtc6gr1OdKbfeYPlGU23cuO9fHtMuS1H4dJBkcEIkK2//mlblESzA3WkUbTBYyLbwt06AAeFCMWnwUNwka1H4S2KGBVGdOD1lrBu89s3n4DuHX01cYL2ISFH4eJiSwYkAGAA6jZQ0dewE149dkaRzJLjRt8GUDKrdupG8v2ML2wY4IwT8WVCD+Wx0xzVhm/DMhuA5l2x+NNFxTJHP/dwZ2r6TgotkAx1Q0pgq27rahblNhh1b1/kr5jql5vGqFactAZrJHXTL9gM4NTXTkgVVEZbPRmW1jFKb3fzAvthxEcCZfP06QWybwiJIr3Lr5ynlgrh/poO4gfY5aURK2nqOBA2G82ZHexrVJuvaCGZdxKou0Mvov15vxB6lH/UK3ERFam9YNYKZkI7a5A1FAK67ZFHTU2nrjkMtx03S+QPmusFpdoZ5S7kg7p/pIAIgB3QzN1AagWc6T5C5TgmbfP79/m2f2HwZ7tq40roilq5DsRVcaXZyC6uVjs9brTgolfQd8lt+ah7u23XY2ImaCsOHReOach+l3RlmlXLB9G2I+2c6iADImG6PrNIKPPN37KemZvDKiUZoe5O4S/o7FFvBFeWnbovqMDs5b8UpozE901ajAHCrl33/peNtemv/NZsmAJVZJe01Dg+Zcx+l3RmmHcFuM+iJ+jbUO9mJW++gIwIgY7o9skp7qmzb3jBjcFjAmOpQwgSXv/PYuuMQrrmosw/f32HaCkzTCNRUCezUlLkmsbpXpiCvemOm7Vx3b1yJiVsvb7FNdLMzTDOC3XbQI4neuo8YgTOm28msOi3ubduu4HKTQbNMhGfufH9kPnpTQZNLly1oiUuoTdYT5+/XeRTZpkkG9P7xcQrXKJQOP8ywmbUv/ui6pRh9cF+L55TKAhoX24SIkuit+4gAyJheeDOk2XnYtjcs1TSgz4AZzB6q8wC6/ZEDxqC0OARjDkzunTrPIxNJ1XbqnpiEXm4Mm6aQ8ZjYduzi6dN9RABkTO4/+gC27R0xfLwjngpHV2dYZQ+F96//HK/WG7FG1yPVCo6fmrIKYAPMNotgmuTxiVpLdbLhIQe3XbkcADD60D7r9vlRxt+0Z2s6krpybt1xKFE9Zx2duBXn+dsoIiIAMqYXH32a2LY37OMNMxDXG9PaVNFxxvwE4InNlxmDxJLm2R+fqLWpQV450cDoQ/swb/asxDOT109OYXyi1pypdevZdxITkqY6xrZjL9q3UUREAOSArPW7cbFpb9jHuyliJJ/UH15RImqqY6ICyRQ2o9KtOw61dP6KxjR3lB20MZNsJB2XTooRpamOidOxF+3bKBoiAPqAPEVo+jF9vFGVtpJGxCqmmXHTtr1tmUTDKoaFGZ2jKpalQS8Mm6ZzqGC8sHcnbXWMdOz5QNxAC06SOIJeFqXXEea7H6eoexi6rj7KhXDOrDOfw/DQmdrJtRQ7f5PdtJuGTfW8w64h6t2RwKv+RGYABSfutL5baXTjZOT0qwBqk/XmiN/vmbP6/HNCM2QmRTcK1tkKTjZm8JV99rWTbakOOTjZmOmZYTNu8rqwd0dG7f2HCICCE9c4ZxIYNz+wD5u27U2kQtIJldGH9gGMps48KGjCOhO/MDF5EyVFN9I23ZO0O3/AzUZ618aVPVPZJYnIFj/7wUEEQMGJa5wzfdxK5247I/B30iWNzl7nEWNjcNQJE1MB9riF2QnQjrTjChjlRpqk/oFtUFdadh3TtRHEz14QG0Dh0enTgwFVfmw+7ihd+S3j+7Fp296mbjyOwTZqdLll+wHrgu7Xr1nc1EkPDzmoVpxmsjqn3LqHqjsQ7ETHJ2pGvfzwUHvtZL+6Jm5HaavqSSs/VNi1KaEiGTUHG5kBFJwNq0aw+/mXW6JqVUDV6vPPsfLP12HqqMcnam0RvHEI6zTHJ2pGd0pV0N12RGw7gt6645BxdqECvEzHiVv/wNZo2om7ZvA4pmvzX0cePciE3iACoA/YefCYMctk8GMOfvQ69Q1g7qhNnUoQp0wtNgAgenQZNuuIW93K1mBpEnSMM/fKdJygMTuMEU/1Y0NaQVe21yYd/uAiKqA+IG6H4c8c+UcfvjCWGiCsEyoTNV0Et37oQmy99kIrt0HlphjWiXZLLWESdCOW6h11L025/IH4apW0Mm92em1C/yMzgD6gE2NeXDWA6VwE4I8+fKFxxmHCxk1xeMjp2ig1rQCn265c3pKlVBEnmVzabep2Lp28BiAK9ogA6AM6/dB1agDTx607l8nAasPtj7Qbff04XnWtqEjVpKSlB09Tn97psfzPbr5XvW3yRCPV+9eteBKhtxB3mHcl0UmJtgK4EsBpAM8A+FVmnozab/Xq1bx79+5uN6+QpDkaMyVRUyqctM41PlELzfBZrTg4fnqqZVQdzOFvOu6gjkyjnl1amFR2cW01Qm8goj3MvLpteUYC4HIAjzPzFBH9AQAw8+9E7ScCoDf06uMO0/srPXXcdvSqA8wrvXp2phgIAvDs2PrUziOkg0kAZGIEZuavMbMqvbQLwHlZtEPQ06tKTGHHi1Of18+glxHs1bNLs0SkkB158AL6NQCPmVYS0Q1EtJuIdh87dqyHzRpcevVxm45XrTix6vP6GfQygr16dhJE1h90TQAQ0V8T0Xc1fx/0bfMJAFMA7jMdh5nvYebVzLx6wQJ9dGu3yTp7Zq/p1cdtOs+Wq5Ynbsegj0x79ewkO2h/0DUvIGZ+T9h6IvoVAB8A8G7OwhBhySB6O9h6oXRqbI06TxJvmLgeUf1mMO5ldK8EkRWfrIzAVwD4NIBfYGZrvU4WRmDxdtCTlbHVpsP2b1MdcsDs1hQObm9zDbeM72+WqCwT4bpLFuGODSu6fg1xthOEKHJlxEim6gAACNxJREFUBAbwPwCcDeDrRLSXiP4so3ZEMug6ZRNZGFttk6Sp6Ny7Nq7EycYMJusN7fZR13DL+H7cu+twM1XGNDPu3XUYt4zv7/o1pJUQThDCyMoL6C3MvIiZV3p/H8uiHTYMuk7ZRBaCMa7Qido+6hruf/KIdr1puQ221zDo3kxCb8iDF1CuEW8HPVkIxrhCJ6oGbon0yZLVNZjSXHdSr9i2rTLzFHqBCIAIxNtBTxaCMa7QCRNGpjoGToma11A2CAjTchts25r3meegecb1KyIALPBnz3xi82UD3/kD2QjGuEInrPi8EV/fft0li7SbmJbbYHsNeZ55in2if8jECygpkgpCiOsZ49/e9k33e3iJF1A74hlXPHKVCygpIgCKR546saiaAwrJZxOO5AEqHnlzAxUGgLypCmxVQnnRs+eVvNsnBHtEAAhdI2+ujEG7xfCQ06w3oMiLnj3P5Nk+IcRDCsIIXSOProzB9AV5UlEVBSkm3z+IABC6RielKnuF5LNJhty3/kBUQELXEFWBIOQbmQEIXcNGVTAoKphBuU6hWIgAELpKmKqg31Ntq06/NlkHAU3XyX67TqG4iApIyIy8eQmlid8FFkCb33y/XKdQbGQGIGRGHr2EkqBT7+iEW5CsrlPUUYJCBICQGUXwEgpjfKKG2x85gFdONJrLlHonqvMHsrnOfle7CfEQFZCQGUX2ElIdqb/zV9Qb05EZQ7O6zn5WuwnxkRmAkBlFDiiKUvFMM6PilFu2UYbgkQyvs1/UbkI6iAAQMqWoAUVRHeaIzxaQJ+FWdLWbkC4iAAQhAaaOFDij3smjcBtdt7TNRlEUtZuQPmIDEIQEmDKLVitOrivGSYU7wY/MAAQhAUW2X+RxZiJkgwgAQUiIdKRC0REVkCAIwoCSiQAgok8S0VNEtJeIvkZEC7NohyAIwiCT1QxgKzO/g5lXAvgKgFszaocgCMLAkokAYObXfD/noT1XliAIgtBlMjMCE9GnAPwSgFcBXBqy3Q0AbgCAxYsX96ZxgiAIAwAxd2fwTUR/DeBNmlWfYOYv+7b7OIC5zHxb1DFXr17Nu3fvTrGVgiAI/Q8R7WHm1cHlXZsBMPN7LDe9D8BXAUQKAEGIi6Q+FgQzWXkBvdX384MADmbRDqG/8RdlYbipjzdt24slmx/F2rHHMT5Ry7qJgpApWdkAxohoKYAZAM8D+FhG7RD6GF3Gzm6XZZQZh1AkMhEAzHxNFucVBouojJ0qD35aHbQUWxGKhkQCC32LTYrjNPPgS7EVoWiIABD6FlPGTj9p5sGXYitC0RABIPQt/tTHgFuRy0/aefBNwkSKrQh5RQSA0NdsWDWCJzZfhufG1uOujSu7mge/yDWOhcFE0kELA0O30zcXuUaAMJiIABCEFJEaAUKREBWQIAjCgCICQBAEYUARASAIgjCgiAAQBEEYUEQACIIgDCgiAARBEAaUrhWE6QZEdAxu9lBb3gDgn7rUnG5T1LYXtd1Acdte1HYDxW170dp9PjMvCC4slACICxHt1lXBKQJFbXtR2w0Ut+1FbTdQ3LYXtd1BRAUkCIIwoIgAEARBGFD6XQDck3UDOqCobS9qu4Hitr2o7QaK2/aitruFvrYBCIIgCGb6fQYgCIIgGBABIAiCMKD0vQAgok8S0VNEtJeIvkZEC7Nukw1EtJWIDnpt/xIRVbNuky1EdC0RHSCiGSLKvascEV1BRIeI6PtEtDnr9thCRJ8lopeI6LtZtyUORLSIiHYS0d9778lvZ90mW4hoLhF9i4j2eW2/Pes2dULf2wCI6CeY+TXv//8BwD9n5o9l3KxIiOhyAI8z8xQR/QEAMPPvZNwsK4jobQBmAPw5gP/IzLszbpIRIioD+B6A9wJ4AcC3AVzHzH+facMsIKKfB/A6gL9g5rdn3R5biOhcAOcy83eI6GwAewBsKMg9JwDzmPl1InIAfAPAbzPzroybloi+nwGozt9jHoBCSDxm/hozT3k/dwE4L8v2xIGZn2bmQ1m3w5KLAXyfmf+RmU8D+EsAH8y4TVYw898CeDnrdsSFmV9k5u94//8xgKcBFKKKDru87v10vL9C9Ck6+l4AAAARfYqIjgC4HsCtWbcnAb8G4LGsG9GnjAA44vv9AgrSGfUDRLQEwCoAT2bbEnuIqExEewG8BODrzFyYtgfpCwFARH9NRN/V/H0QAJj5E8y8CMB9AH4r29aeIard3jafADAFt+25wabtghAGEZ0F4GEANwZm6rmGmaeZeSXcWfnFRFQY9VuQvqgJzMzvsdz0PgBfBXBbF5tjTVS7iehXAHwAwLs5Z8aaGPc879QALPL9Ps9bJnQRT3/+MID7mPmLWbcnCcw8SUQ7AVwBoFCGeEVfzADCIKK3+n5+EMDBrNoSByK6AsB/AnAVM5/Iuj19zLcBvJWILiCi2QD+FYDtGbepr/EMqZ8B8DQzfzrr9sSBiBYojzwiqsB1HihEn6JjELyAHgawFK5XyvMAPsbMuR/hEdH3AcwB8CNv0a4ieC8BABH9IoD/DmABgEkAe5l5XbatMkNE7wdwN4AygM8y86cybpIVRHQ/gHfBTU38QwC3MfNnMm2UBUT0LwD8HYD9cL9LAPhdZv5qdq2yg4jeAeDzcN+VEoAHmPn3sm1VcvpeAAiCIAh6+l4FJAiCIOgRASAIgjCgiAAQBEEYUEQACIIgDCgiAARBEAYUEQCCkBAvq+WzRHSO93vY+70k25YJgh0iAAQhIcx8BMCfAhjzFo0BuIeZn8usUYIQA4kDEIQO8FIa7AHwWQC/AWAlMzeybZUg2NEXuYAEISuYuUFEowD+CsDl0vkLRUJUQILQOe8D8CKAwmaFFAYTEQCC0AFEtBJuQrA1ADZ51a4EoRCIABCEhHhZLf8Ubj77wwC2Avgv2bZKEOwRASAIyfkNAIeZ+eve7z8B8DYi+oUM2yQI1ogXkCAIwoAiMwBBEIQBRQSAIAjCgCICQBAEYUARASAIgjCgiAAQBEEYUEQACIIgDCgiAARBEAaU/w+IKR3MH58ClgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"x = np.random.randn(1000)\n",
"y = np.random.randn(1000)\n",
"corr = scipy.stats.pearsonr(x,y)[0]\n",
"\n",
"plt.scatter(x,y)\n",
"plt.xlabel('X')\n",
"plt.ylabel('Y')\n",
"plt.title('Correleation = '+ str(corr))\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dfZxdVX3v8c83kxOYoDAJiQjDQ9BGLMjlwbkYi1UsFAJVQxEsXijRS+W+qn2yvqhQ2wtVvNLGgnJfgqaCgiIPIsW0QpHLQ61W0EmpYKBokIckBoiEBDVBhuR3/1jrDDsn58ycWcmck2G+79frvGbvtdbee6399Nt77T3nKCIwMzMrMaXbFTAzs4nLQcTMzIo5iJiZWTEHETMzK+YgYmZmxRxEzMysmIOIFZP0qKRjxmneyyQdNR7zNrPtx0FkApP0PyQNSvqFpNWSbpH0pm7Xa6wkfVHSBdW0iDgoIu7qUpXaIumDkp6Q9KykKyTt1KLcNEk35KAbrYJjLvegpJWVtFmSviPpaUnrJH1X0pEN071K0j9L+rmkn0n6u0rel/O+8aykH0n6g0reaXnfqX825Pq9frR6NeSfkaerzvuWhnk/L+n+Sv6jkjZW8r9ZyTtV0kOS1kt6StKVknZtsty5kp6T9OVK2l82LHejpM2SZuX8mZKuy+vzZ5Kurs5b0m9I+l5el/dVjydJR+V5Vee/MOftJOlySY/laf9T0vHN1tdLTkT4MwE/wJ8DTwEnAbsANeDtwKKCeU1tJ61JmUeBY7ZDW74IXNDtdTrGOh8HPAkcBMwA7gIubFF2GvBnwJuA1cBRLcp9BPgWsLKStjNwAOmCT8CJwNr69snzfjjvD7vk8v+tMv1BwE55+LXAE8DrWyz/PXleGq1elbwZwH8BPwT+YIT1dRfwv9vZd4B9gFl5+GXA1cAlTcp9E/g34MsjLPd84I7K+KV5ul2B3YD/B1yU82YCTwOnAD3A6cAzwIycf1SzdZDzdsnLmpO31duAnwNzur2vjvux0O0K+FOw0dLO/wvglBHK7AR8Cvhp/nyqcjI5ClgJfDifVL7ULC2XfRvwn8A64N8bTlDDJ4J84JyTT0JPA9cDMytlv5rnuz6fkA7K6WcBQ8DzuU3/1GTe7bTlQ6Sguhp4bwe2wVeA/1MZPxp4oo3pVtIkiAD7Aw8Cx49woppCulAI4BWV9fdvbdb5gLx+3tUi/07gvLHUC/gs8H5SkGgaRPKJdVP1hEqbFyCkIHIVcHND+ql5HzufFkGEFHR/AiyspN0CvL8y/gHg1sq+vqxhHj8Czqzua2PYR+4D3jne+2K3P+7OmpjeSLri/McRynwEmAccChwCHAH8VSX/laQrr/1IJ6Kt0iQdBlwB/C9gd+BzwJIW3TZ/TLpKfguwF+kK7jOV/FuAucArgP8gXV0SEYvz8N9FxMsi4u2FbdkN6AfOBD4jaUazlSLp0twt1OxzX7NpWjgI+EFl/AfAHpJ2H8M8qv4v8JfAxhb1vg94DlgCfD4inspZ84BHc/fRzyTdJenghmkvlbSBdMewGri5yfz3A95MOmG3VS9JRwADpEAykjNIge7RhvSrJa2R9E1JhzTM+02S1pOu5t9JunCo5+0KfJR09zWS3yTtb1+rpH0GeJukGXkfeSdp3xyefcM8BLyuMv4KSU9KekTSxZJ2abZgSXsArwGWjVLHia/bUcyfsX+A0xjlqpd0R3BCZfw44NE8fBTpyn/nSn6ztMuAjzXM9yHgLXn4UV68W3gQOLpSbk/SHUazrrI+0tX0bnn8izR0ZzXMe7S2bKwuh3RHMm+ct8HDwPzKeC23ac4o0211JwL8LnBLpT2t7kR2Bt7NllfW38zr+XhS19bZpKvvaQ3T9pC60/4KqDWZ918Dd7Vbrzy/wfp6ZuQ7keXAexrSjgR6genAuaS71L4m0/aT7jZeU0n7NPDhPHw+re9ELge+2JC2F6kLa3P+3FZfV6QLpXV5HdeAhbnM53L+K4EDSXeE+5PuqD/XZLm1vIyt8l6KH9+JTExPA7MkTR2hzF7AY5Xxx3Ja3ZqIeK5hmsa0/YAPVa/WSf3Ve7G1/YB/rJR7kNSFsYekHkkXSnpY0rOkAAEwa5R2ttuWpyPihcr4BlI3yHbR8AC6ftX6C1K/el19+OdjnPcuwN8BfzJa2Yh4LiKuAc6pXLlvBL4dEbdExPPAJ0knw19vmHZTRHwb2Bv4wyazPwO4cgz1ej9wX0TcPUr73kQ6+d7QUJ/vRMTGiNgQEZ8gnbx/s0mbVwH/Alyb53cocAxw8SjLnU56tnFlQ9b1pC6ql5O22cPAl/OyngYWkO5wngTmk4LBypz/REQ8EBGbI+IR4C9IdzLV5U4hdQ8/D/zRSHV8qRjpJGQ7ru8CvyJ1H93QosxPSSf2+u30vjmtrtnXNzemrQA+HhEfb6NOK4D/GRHfacyQ9Pukg/MYUgDZjdTdVe86GO2rpEdrS9skfZb0wLSZxyLioMbEiLia3P1WsYzUtXZ9Hj8EeDKfiMZiLumZwb9JgnQ3sZukJ0hX+Y82maYGvIrUhXYf6aq+XVOBV1cTlN722ost96UR60V6BvQWSSfk8jOBwyQdGhHVk+dC4MaI+MUo9Qq27kpqVuejcr0ez/V6GdAj6cCIOLwyze+SXkC4q2FehwIfiIhf5rZ/Fvj2cCUi/hX47zlvKumu7u9HqPPwhbhShS4H9iDdOQ+1auxLSrdvhfwp+5AeJD9JCiTTSSeW40nPFgAuID0In0264v82ucuIJl0mLdIGSMHhDaQDfBfgd4CX5/xHebHL6YOkA3a/PD4bWJCH3096OL9rnselpAPw13L+hcBXGpZdnfdY2zI87Tiu//mkLpgDSd1zd9Di7axcfidSd9RK4Ng8LNIJ8pWVz0mkAPlKUpfRPFI31DRS98+HSXc7e+X5HkC68zoml/8g6ep6Gul5wKnkEy2pG/CXwDsa6rYYuKohbbR69TXk/zvpCn63yjx6SS9S/FbDvPclBb5peT2cDawBds/5pwH75uH9gH8lBSJI+3p1uZ8kBb/ZDcv4JvDRJtvhTtJznt78uRT490r+YaRjaVfSc5jvVPLemusj0h35ncAXKvmfBe4GXtbt80MnP12vgD/bsPHSwTaYTwxPAN8AfiPn7QxcQnqQujoP75zzjqKNIJLT5wPfJ3U3rCa9ZdUsiEzJJ5GH8knuYfLbS/kk9vWc/hip66QaROby4htgNzWZ91jbMjztOK//erfHs8AXyG+M5bxlwGkNdYqGz5wm89yiPaQXFX6Q191a0gn1zQ3TnER67vAsKZDX33ybncuvy3n3A+9rmHbnnH/0KG1tun9U8u+i4ZkI6dnCY2z9yvBBpDuoX5K6Zm8HBir5HycF21/mv4vJAabJcs+n4ZkI6TnKC/X9qyFvf+Cf8nLXkrrK5lbyryEFvvXAdeS34CrbexUpaK/I+2H9WNgvb9PnSF2d9c9prdbZS+WjvALMzMzGzA/WzcysmIOImZkVcxAxM7NiDiJmZlZs0v2fyKxZs2LOnDndroaZ2YSxdOnSn0XE7GZ5ky6IzJkzh8HBwW5Xw8xswpD0WKs8d2eZmVkxBxEzMyvmIGJmZsUcRMzMrJiDiJmZFRu3ICLpCklPSfphJW2mpNsk/Tj/nZHTJekSScsl3Sfp8Mo0C3P5H0taWEl/vaT78zSX5K9h3qHddO8qjrzwDvY/5xsceeEd3HTvqm5Xycxsm4znncgXSd8AW3UOcHtEzCV9c+c5Of140je5ziX9VOtlkIIOcB7pq8iPAM6r/OzpZcD7KtM1LmuHctO9qzj3xvtZtW4jAaxat5Fzb7zfgcTMJrRxCyIR8S3SVy1XLeDFXxq7kvRbGPX0qyK5G+iTtCfp9w9ui4i1EfEM6acs5+e8XSPi7khfQ3xVZV47pEW3PsTGoU1bpG0c2sSiWx/qUo3MzLZdp5+J7BERq/PwE6RfAIP0/f8rKuVW5rSR0lc2SW9K0lmSBiUNrlmzZttaUOin6zaOKd3MbCLo2oP1fAfRkR8ziYjFETEQEQOzZzf9z/1xt1df75jSzcwmgk4HkSdzVxT571M5fRXp5ybr9s5pI6Xv3SR9h3X2cQfQW+vZIq231sPZxx3QpRqZmW27TgeRJUD9DauFpJ9Mraefkd/Smgesz91etwLHSpqRH6gfC9ya856VNC+/lXVGZV47pBMP6+cTJx1Mf18vAvr7evnESQdz4mEte+HMzHZ44/YFjJKuIf0u8yxJK0lvWV0IXC/pTNJvL78rF78ZOIH0O9EbgPcCRMRaSR8j/cY3wEcjov6w/v2kN8B6gVvyZ4d24mH9Dhpm9pIy6X5jfWBgIPwtvmZm7ZO0NCIGmuX5P9bNzKyYg4iZmRVzEDEzs2IOImZmVsxBxMzMijmImJlZMQcRMzMr5iBiZmbFHETMzKyYg4iZmRVzEDEzs2IOImZmVsxBxMzMijmImJlZMQcRMzMr5iBiZmbFHETMzKyYg4iZmRVzEDEzs2IOImZmVsxBxMzMijmImJlZMQcRMzMr5iBiZmbFHETMzKyYg4iZmRVzEDEzs2IOImZmVsxBxMzMijmImJlZMQcRMzMr1pUgIumDkpZJ+qGkayTtLGl/SfdIWi7pOknTctmd8vjynD+nMp9zc/pDko7rRlvMzCazjgcRSf3AnwADEfE6oAc4Ffhb4OKI+DXgGeDMPMmZwDM5/eJcDkkH5ukOAuYDl0rq6WRbzMwmu251Z00FeiVNBaYDq4HfAm7I+VcCJ+bhBXmcnH+0JOX0ayPiVxHxCLAcOKJD9TczM7oQRCJiFfBJ4HFS8FgPLAXWRcQLudhKoD8P9wMr8rQv5PK7V9ObTLMFSWdJGpQ0uGbNmu3bIDOzSawb3VkzSHcR+wN7AbuQuqPGTUQsjoiBiBiYPXv2eC7KzGxS6UZ31jHAIxGxJiKGgBuBI4G+3L0FsDewKg+vAvYByPm7AU9X05tMY2ZmHdCNIPI4ME/S9Pxs42jgAeBO4ORcZiHw9Ty8JI+T8++IiMjpp+a3t/YH5gLf61AbzMyM9IC7oyLiHkk3AP8BvADcCywGvgFcK+mCnHZ5nuRy4EuSlgNrSW9kERHLJF1PCkAvAB+IiE0dbYyZ2SSndFE/eQwMDMTg4GC3q2FmNmFIWhoRA83y/B/rZmZWzEHEzMyKOYiYmVkxBxEzMyvmIGJmZsUcRMzMrJiDiJmZFXMQMTOzYg4iZmZWzEHEzMyKOYiYmVkxBxEzMyvmIGJmZsUcRMzMrJiDiJmZFXMQMTOzYg4iZmZWzEHEzMyKOYiYmVkxBxEzMyvmIGJmZsUcRMzMrJiDiJmZFXMQMTOzYg4iZmZWzEHEzMyKOYiYmVkxBxEzMyvmIGJmZsUcRMzMrFhXgoikPkk3SPovSQ9KeqOkmZJuk/Tj/HdGLitJl0haLuk+SYdX5rMwl/+xpIXdaIuZ2WTWrTuRTwP/EhGvBQ4BHgTOAW6PiLnA7Xkc4Hhgbv6cBVwGIGkmcB7wBuAI4Lx64DEzs87oeBCRtBvwZuBygIh4PiLWAQuAK3OxK4ET8/AC4KpI7gb6JO0JHAfcFhFrI+IZ4DZgfgebYmY26XXjTmR/YA3wBUn3Svq8pF2APSJidS7zBLBHHu4HVlSmX5nTWqVvRdJZkgYlDa5Zs2Y7NsXMbHLrRhCZChwOXBYRhwG/5MWuKwAiIoDYXguMiMURMRARA7Nnz95eszUzm/S6EURWAisj4p48fgMpqDyZu6nIf5/K+auAfSrT753TWqWbmVmHdDyIRMQTwApJB+Sko4EHgCVA/Q2rhcDX8/AS4Iz8ltY8YH3u9roVOFbSjPxA/dicZmZmHTK1S8v9Y+BqSdOAnwDvJQW06yWdCTwGvCuXvRk4AVgObMhliYi1kj4GfD+X+2hErO1cE8zMTOnxw+QxMDAQg4OD3a6GmdmEIWlpRAw0y/N/rJuZWTEHETMzK+YgYmZmxRxEzMysmIOImZkVcxAxM7NiDiJmZlbMQcTMzIo5iJiZWTEHETMzK+YgYmZmxRxEzMysWMsgIulmSXM6VxUzM5toRroT+QLwTUkfkVTrVIXMzGziaPl7IhHxVUm3AH8NDEr6ErC5kn9RB+pnZmY7sNF+lOp50m+g7wS8nEoQMTMzaxlEJM0HLiL9PO3hEbGhY7UyM7MJYaQ7kY8Ap0TEsk5VxszMJpaRnon8ZicrYmZmE4//T8TMzIo5iJiZWTEHETMzK+YgYmZmxRxEzMysmIOImZkVcxAxM7NiDiJmZlbMQcTMzIo5iJiZWTEHETMzK+YgYmZmxboWRCT1SLpX0j/n8f0l3SNpuaTrJE3L6Tvl8eU5f05lHufm9IckHdedlpiZTV7dvBP5U+DByvjfAhdHxK8BzwBn5vQzgWdy+sW5HJIOBE4FDgLmA5dK6ulQ3c3MjC4FEUl7A78DfD6PC/gt4IZc5ErgxDy8II+T84/O5RcA10bEryLiEWA5cERnWmBmZtC9O5FPAX/Biz+3uzuwLiJeyOMrgf483A+sAMj563P54fQm02xB0lmSBiUNrlmzZnu2w8xsUut4EJH0NuCpiFjaqWVGxOKIGIiIgdmzZ3dqsWZmL3kj/TzueDkSeIekE4CdgV2BTwN9kqbmu429gVW5/CpgH2ClpKnAbsDTlfS66jRmZtYBHb8TiYhzI2LviJhDejB+R0ScBtwJnJyLLQS+noeX5HFy/h0RETn91Pz21v7AXOB7HWqGmZnRnTuRVj4MXCvpAuBe4PKcfjnwJUnLgbWkwENELJN0PfAA8ALwgYjY1Plqm5lNXkoX9ZPHwMBADA4OdrsaZmYThqSlETHQLM//sW5mZsUcRMzMrJiDiJmZFXMQMTOzYg4iZmZWzEHEzMyKOYiYmVkxBxEzMyvmIGJmZsUcRMzMrJiDiJmZFXMQMTOzYg4iZmZWzEHEzMyKOYiYmVkxBxEzMyvmIGJmZsUcRMzMrJiDiJmZFXMQMTOzYg4iZmZWzEHEzMyKOYiYmVkxBxEzMyvmIGJmZsUcRMzMrJiDiJmZFXMQMTOzYg4iZmZWzEHEzMyKdTyISNpH0p2SHpC0TNKf5vSZkm6T9OP8d0ZOl6RLJC2XdJ+kwyvzWpjL/1jSwk63xcxssuvGncgLwIci4kBgHvABSQcC5wC3R8Rc4PY8DnA8MDd/zgIugxR0gPOANwBHAOfVA4+ZmXVGx4NIRKyOiP/Iwz8HHgT6gQXAlbnYlcCJeXgBcFUkdwN9kvYEjgNui4i1EfEMcBswv4NNMTOb9Lr6TETSHOAw4B5gj4hYnbOeAPbIw/3AispkK3Naq/RmyzlL0qCkwTVr1my3+puZTXZdCyKSXgZ8DfiziHi2mhcRAcT2WlZELI6IgYgYmD179vaarZnZpNeVICKpRgogV0fEjTn5ydxNRf77VE5fBexTmXzvnNYq3czMOqQbb2cJuBx4MCIuqmQtAepvWC0Evl5JPyO/pTUPWJ+7vW4FjpU0Iz9QPzanmZlZh0ztwjKPBH4fuF/Sf+a0vwQuBK6XdCbwGPCunHczcAKwHNgAvBcgItZK+hjw/VzuoxGxtjNNMDMzAKXHD5PHwMBADA4OdrsaZmYThqSlETHQLM//sW5mZsUcRMzMrJiDiJmZFXMQMTOzYg4iZmZWzEHEzMyKOYiYmVkxBxEzMyvmIGJmZsUcRMzMrJiDiJmZFXMQMTOzYg4iZmZWzEHEzMyKOYiYmVkxBxEzMyvmIGJmZsUcRMzMrJiDiJmZFXMQMTOzYg4iZmZWzEHEzMyKOYiYmVkxBxEzMyvmIGJmZsWmdrsCZmbddNO9q1h060P8dN1G9urr5ezjDuDEw/q7Xa0Jw0HEzCatm+5dxbk33s/GoU0ArFq3kXNvvB/AgaRN7s4ys0lr0a0PDQeQuo1Dm1h060NdqtHE4yBiZpPWT9dtHFO6bc1BxMwmrb36eseUbltzEDGzSevs4w6gt9azRVpvrYezjzugSzWaeCb8g3VJ84FPAz3A5yPiwvFcXrM3OYDhtN16a0jwzIahlvPorU1h51oP6zYMDZdft2GI3toUNg5tJnK5aT1i+rSprN84tNWyVq3byBTB5ly4r7fG+e84aIuHgdW6VpczljdQWr25Uk9f1eS2//R5+3LBiQc3nc+qdRvpkdgUQX9fL2997Wz++QerWbcxrS8JIqC/SR2bzWPG9BoRsH7jUNttPO0fvst3Hl47PH7kq2dyysC+Ldt5/pJlw/Wrr+u3HbLnFvWeMb3GgXu+nLt/8gybIpBgqmBoM8P557196+3zN/+0bHhfqW/D+jZu522h6vbpm17juaFNbKwvlOb7Ratt+9bXzubO/1qz1TZq3ObV8tV1sMu0Hmo9U1i3cWh4+r7KNumrbKvGdjXbV5/ZMLRFPebs3rvF+u2dOoUNQ5uHy+wyrYcNz28igB6Jea+awQOrf970WJxem8JJr9+bry1ducX66q1N4RMnHbzV+hrtOBhpW1X32/r+3ai+fww+tpav3PP48HFd1185/qv7Y/V4qW+/+r7Qal1vb4pmLZogJPUAPwJ+G1gJfB94d0Q80GqagYGBGBwcLFpe45scALUpAsHQpvFfj6MtqzZFLDrlkOGdu7GuVb21nqYHS1WzefTWenjn6/v52tJVLecNWwaS0erSSrWOJfNo1sbGAFInIBqmfefr+7nueysYajyiC9V6xKKTX9w+Z9/wg6225RSlE2B1ma22VbvrpLpfjHXa+vLb2eZjVW8XULR/jJfGi6CxHAeN22os67lxH2xU6xGbNgWbRyjTSjvH+4h1k5ZGxECzvInenXUEsDwifhIRzwPXAgvGa2HN3uQY2hwdCSDtLGtocwy/VdKsrlXtvIHS6s2Va+5ZMepBcc09K0acTzuqdSyZR7M2NgsgsPXBW2/n9gogkIJ/tT3NtuXmYKtlttpW7a6T6n4x1mnry29nm49VvV2l+8d4qe67MLbjoHFbjaVto+1pQ4UBpFm9tqeJ3p3VD1S3+ErgDY2FJJ0FnAWw7777Fi9sIryxUa9jO3UdrUyr/E1t3L1Wy2zLehtLe0aavkQ77Ryr0vY0Kz+WeTSWHevyx2NdlNSjExrbOtbjoFp+R2rfeNVlot+JtCUiFkfEQEQMzJ49u3g+E+GNjXod26nraGVa5fdIo867WmZb1ttY2jPS9CXaaedYlbanWfmxzKOx7FiXPx7rol6PHe24amzrWI+DavkdqW3jVZeJHkRWAftUxvfOaeOi2ZsctSmi1jM+B1ij0ZZVm6Lhh2/N6lrVzhsord5cefcb9hlx3gDvfsOLm2W0urRTx5J5NGvjka+e2bRs41qtt7M2Zftt21rPltun2bacIrZaZqtt1e46qe4XY522vvx2tvlY1dtVun+Ml+q+C2M7Dhq31VjaNtqeVutR8Ql7PN84m+hB5PvAXEn7S5oGnAosGa+FnXhYP5846WD6+3oR6Y2IRaccwqKTDxlO6+utMWN6bcT59NamMGN6bYvyIr0xUt2RpvUovd3SZFmQTjh1fb21LR6eNta1upz+vt62HrI1a+8nTjqYC048eDi9mcYHk9X5wItXcP19vZw+b1/6el9cX/WLu8Y6tprHjOm14XXUThuvft8btwokR756Jhf/3qFN27nolEO2qF99XTfWe8b0Gke+euZwvSSoVY6uGdNrww/V6+1ZdPIhW+wrfb01LnrXoSw65ZCt6tJsWzVunxnTa/TWtjykG/eLVtPWt0WzbdS4zavlq+tgl2k9w+P16avbpLqtqu1qta821qNx/U7Pba2n7TKtZ/j46ZE48tUzWx6L02tTOH3evlusrylq/mZhO8dBq23VuN+2uqGbMb3Gxb93KKfP25dm1y39fb0sOvkQLvq9Q1seL/XtN9K6Hg8T+u0sAEknAJ8iveJ7RUR8fKTy2/J2lpnZZDTS21kT/cE6EXEzcHO362FmNhlN9O4sMzPrIgcRMzMr5iBiZmbFHETMzKzYhH87a6wkrQEeG8Mks4CfjVN1dlSTsc0wOdvtNk8O29rm/SKi6X9qT7ogMlaSBlu92vZSNRnbDJOz3W7z5DCebXZ3lpmZFXMQMTOzYg4io1vc7Qp0wWRsM0zOdrvNk8O4tdnPRMzMrJjvRMzMrJiDiJmZFXMQySTNl/SQpOWSzmmSv5Ok63L+PZLmdL6W21cbbf5zSQ9Iuk/S7ZL260Y9t6fR2lwp905JIWnCvwraTpslvStv62WSvtLpOo6HNvbvfSXdKenevI+f0I16bi+SrpD0lKQftsiXpEvy+rhP0uHbZcERMek/pK+Rfxh4FTAN+AFwYEOZ9wOfzcOnAtd1u94daPNbgel5+A8nQ5tzuZcD3wLuBga6Xe8ObOe5wL3AjDz+im7Xu0PtXgz8YR4+EHi02/Xexja/GTgc+GGL/BOAW0i/fzUPuGd7LNd3IskRwPKI+ElEPA9cCyxoKLMAuDIP3wAcLY3Tb4Z2xqhtjog7I2JDHr2b9MuRE1k72xngY8DfAs91snLjpJ02vw/4TEQ8AxART3W4juOhnXYHsGse3g34aQfrt91FxLeAtSMUWQBcFcndQJ+kPbd1uQ4iST+wojK+Mqc1LRMRLwDrgd07Urvx0U6bq84kXcVMZKO2Od/i7xMR3+hkxcZRO9v5NcBrJH1H0t2S5nesduOnnXafD5wuaSXpN4n+uDNV65qxHvNtmfA/SmXjT9LpwADwlm7XZTxJmgJcBLyny1XptKmkLq2jSHeb35J0cESs62qtxt+7gS9GxN9LeiPwJUmvi4jN3a7YROI7kWQVsE9lfO+c1rSMpKmk29+nO1K78dFOm5F0DPAR4B0R8asO1W28jNbmlwOvA+6S9Cip33jJBH+43s52XgksiYihiHgE+BEpqExk7bT7TOB6gIj4LrAz6YsKX6raOubHykEk+T4wV9L+kqaRHpwvaSizBFiYh08G7oj8tGqCGrXNkg4DPkcKIC+FfvIR2xwR6yNiVkTMiYg5pOdA74iIwe5Ud7toZ9++iXQXgqRZpO6tn3SykuOgnXY/DhwNIOnXSUFkTUdr2VlLgDPyW1rzgPURsXpbZ+ruLNIzDkl/BNxKeqvjiohYJumjwGBELLNO9jMAAAFoSURBVAEuJ93uLic9vDq1ezXedm22eRHwMuCr+R2CxyPiHV2r9DZqs80vKW22+VbgWEkPAJuAsyNiIt9lt9vuDwH/IOmDpIfs75nIF4aSriFdDMzKz3nOA2oAEfFZ0nOfE4DlwAbgvdtluRN4nZmZWZe5O8vMzIo5iJiZWTEHETMzK+YgYmZmxRxEzMysmIOIWRdJ2kfSI5Jm5vEZeXxOd2tm1h4HEbMuiogVwGXAhTnpQmBxRDzatUqZjYH/T8SsyyTVgKXAFaRv1D00Ioa6Wyuz9vg/1s26LCKGJJ0N/AtwrAOITSTuzjLbMRwPrCZ9AaTZhOEgYtZlkg4Ffpv0rcEf3B4/FGTWKQ4iZl2Ufx3zMuDPIuJx0pdefrK7tTJrn4OIWXe9j/TtyLfl8UuBX5f0kv4BMHvp8NtZZmZWzHciZmZWzEHEzMyKOYiYmVkxBxEzMyvmIGJmZsUcRMzMrJiDiJmZFfv/FdyPjZ/qzoYAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import scipy.stats\n",
"\n",
"x = np.random.rand(100)\n",
"y = 10*x + np.random.randn(100)\n",
"y[0] = 300\n",
"y[1] = 10000\n",
"corr = scipy.stats.pearsonr(x,y)[0]\n",
"\n",
"plt.scatter(x,y)\n",
"plt.xlabel('X')\n",
"plt.ylabel('Y')\n",
"plt.title('Correleation = '+ str(corr))\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de5hcVZ3u8e+bTgPhmgRaxBAIYkC5iGALaI4jCpMEvCSj6KCORA9jjqPjOOJEYdADI4zGg8cL5yjKEeSichExxgGMDJfjFbRjFAiKRK5pQBpCApiISfjNH3tV2KlUVVevVFfR3e/neerpvddae6+1dl1+e6+9ukoRgZmZWY5xnW6AmZmNXA4iZmaWzUHEzMyyOYiYmVk2BxEzM8vmIGJmZtkcRKzlJN0r6Zhh2vdySUcNx77NbOgcREYhSe+Q1CfpKUkPSbpW0n/rdLuGStKFks4qp0XEgRFxU4eatAVJkyV9V9KfJN0n6R0Nyk6UdJGkR9LjjKr8aZJulLRW0u/KgVjSuyVtTM9p5XFUKf9MSbdJ2lBjv5J0mqT7JT0h6TJJO5fyt5V0Qcp7WNLJVW2Kqno/Ucp/m6SfpTbfVKPPb5R0e9ruZ5IOqMr/cKrzidSGbUt590paV6r3h6W8gyQtkfSopC3+2U3SSyTdIGmNpBWS/qYq/+h0jNemY753Ke9CSX+p6nNXyjtS0nWSVkkakPRtSXtU1z+WOIiMMukD4AvAp4Ddgb2ALwNzMvY1vpm0Me5LwF8ojvU7gXMlHVin7OeB7YFpwOHAuyS9p5R/KbAM2BU4DbhSUk8p/+cRsWPpcVMpbwXwUeDqGvWeCLwLmAG8AJgA/J9S/hnAdGBv4LXARyXNrtrHxFK9Z5bSV1G83hZWVyppOvBN4H3AROD7wOLKa0jSLOAU4OhU9wuBf6vazRtL9c4spa8HrgBOqlHveOB7wH8Ak4H5wDck7ZfydwOuAj6R8vuAy6t287+qjvXGlD4JOI/iOdwbeBL4enUbxpSI8GOUPIBdgKeAtzYosy3Fm/7B9PgCsG3KOwpYCXwMeBi4pFZaKvsG4NfAauBnwEtLddwLHJOWx1F8UPwBeIzijT+5VPbbab9rgB8BB6b0+RQfFH9Jffp+jX0305ePAI8ADwHvafHx3iG1b79S2iXAwjrlHwVeUVr/V+DHaXk/4Glgp1L+j4H3peV3Az9pok3fAM6oSrsSWFBafxXwZ2D7tP4gMLOUfyZwWVqeBgQwfpB6/x64qSrtH4GrS+vjgHXA0Wn9W8CnSvlHAw/Xeh01qPdFQFSlHZReMyql/RA4s/Ta+lnV87gOeHFavxA4q8nXwGHAk618XY20h69ERpdXAtsB321Q5jTgSOBlwCEUZ8QfL+U/n+LsbG+KN9sWaZIOBS4A/gfFWfNXKc4wt2VLHwTmAq+hOAt+nOLsveJairPg5wG/ojhzJSLOS8uVM8I3ZvZlF2AKxRnrlyRNqnVQJH1Z0uo6j1trbUPxwb8hIn5fSvsNUO9KBEBVywel5QOBuyPiyQb7OjQN3/xe0ieGeFVYXe+2wPR0PPZIdTXqw32SVkr6ejqTz623us/V9e4uaddS2jfTsNEPJR0yhHprtaNmvRHxJ4qTnHKf35+GrJZKekuD/f4VsHwr2jXiOYiMLrsCj0bEhgZl3gl8MiIeiYgBiuGDd5XynwFOj4inI2JdnbT5wFcj4paI2BgRF1GcRR9Zo773AadFxMqIeJpi6OT4ygdgRFwQEU+W8g6RtEuT/R2sL+tT/vqIuIbi7HT/WjuKiPdHxMQ6j5fWqX9H4ImqtDXATnXK/wA4RdJOkl4E/HeK4a3KvtY02NePKD4Enwe8BXg7sKBOPbXq/ft0f2MXiqtKUt07luqqVe+jwCsoTiBentK/2WS9/wm8RtJRkrahuPLahvp9rixX6n4nzw4b3QgskTSxiXrvpLj6XCCpW9JMipOYZo/1OTx7YvMJ4EJJM6orkfRS4H/S/PMwKjmIjC6PAbsNcob6AuC+0vp9Ka1iICL+XLVNddrewEfKZ+vA1Kr9lMt+t1Tut8BGijPOLkkLJf1B0hMUwxcAzZ7pDtaXx6oC6lqe/dBshaeAnavSdqYYJ6/lnyiGTe6iGLO/lGLIbdB9RcTdEXFPRDwTEbcBnwSOb7KdF6S6bqI4a74xpa9M9VbqqlXvUxHRFxEbIuKPFENUMyXVC5SbRMTvgHnA/6UYTtwNuKNBnyvLlbp/GhHrImJtRHyaYuj01U3Uu57i6vf1FEOlH6EYRm32WP8qIh5Lfb6GImi+uVw4nQRcC3woIn48WJtGMweR0eXnFFcEcxuUeZDig71ir5RWUetrnavTHgD+vepsffuIuLTGtg8Ax1aV3S4i+oF3UNzwP4Zi2Gla2qYyBDLYV0wP1pemSfpK1Wyc8qPecMXvgfHpBnLFIdQZ3oiIVRHxzoh4fkQcSPH++0XKXg68sOrDue6+KI6N6uRV1/tMRJweEdMiYs+0z36gPyIep/iALw8VDVYvNPnZERFXRsRBEbErcDrFc/zLlL28Rr1/jIjHGtTdbJ9vjYjXRMSuETGL4qZ9+VhvqlfSDsC+NHms00yu/6S4x3JJM+0Z1Tp9U8aP1j4ozrr+SBFItge6gWMp7i0AnEVxI7yH4szwJ6SbiKSb0VX7q5XWSxEcjqB4c+1Acda3U8q/l2dvfn+Y4gx477TeA8xJy++nuDm/c9rHlynesC9K+QuBb1XVXd73UPuyadsWHu/LKM7yd6CY/bSGNDmgRtl9KYYcu9Jz8mi5LHAz8FmK+1p/Q3Hm3ZPyjgV2T8svBm6nGGKsbNudtvtWOi7bAV0pb3KqW8ABadv5pW0XAv+fYubRiymCyuyUdwTFEOC41PbLgRtL23alut5HMeS2HdBdyn95KtNDcTXwrVLebIorhQMoZm/dQJqUQHFCMINi+Gs7iiGjAWDXlK+UfkB6zWxHmlSR8l+a0rYH/gW4h2cnXfSk5+ktqcxngJtL2x5PccU6DphJcYVyVMqbQnH/5F86/V5/rjw63gA/huFJLcaS+4A/pTfp1cCrUt52FGO+D6XHOcB2Ke8omggiKX02xRnl6rSfb1M7iIwDTqYYp34yvQE/lfJ2pBjWeZJiKOpENg8i03l2BtiiGvseal82bdvCYz0ZWJSO9f3AO0p5rwaeKq2/jeJKaW3q16yqfU2jCLjr0vE6ppT3WYqTgz8Bd1MMZ5U/rC9Mx678eHfK2y/tb206zidX1bstxZDXE6mOk0t5b6f4AP5TOsYXA88v5b+7Rr0XlvJ/kp7fVRQTMHaoqvvkVOcTFFNlKx/0BwK3pnofA64HequOVXW995byz6aYxPEUxbDTi6rqPQb4XTrWNwHTSnk/pggyT1DcgD+hlHd6quup8qPT7/lOPpQOjJmZ2ZD5noiZmWVzEDEzs2wOImZmls1BxMzMso25L9PbbbfdYtq0aZ1uhpnZiLF06dJHI6KnVt6YCyLTpk2jr6+v080wMxsxJN1XL8/DWWZmls1BxMzMsjmImJlZNgcRMzPL5iBiZmbZhi2ISLpA0iOSbi+lTU4/cn9X+jsppUvSOZJWSLpV0mGlbeal8ndJmldKf7mk29I250hq6iuizey5a9GyfmYsvIF9TrmaGQtvYNGy/k43yQYxnFciF1J802vZKcD1ETGd4ls5T0npx1J8Y+t0il/NOxeKoEPxrZlHUPz06emlnzc9F3hvabvqusxsBFm0rJ9Tr7qN/tXrCKB/9TpOveo2B5LnuGELIhHxI4qvfy6bA1yUli/i2R9PmgNcHIWbgYmS9gBmAddF8WM+jwPXAbNT3s4RcXMUX0N8MY1/iMnMnuPOXnIn69Zv3Cxt3fqNnL3kzg61yJrR7nsiu0fEQ2n5YWD3tDyF4keOKlamtEbpK2uk1yRpvqQ+SX0DAwNb1wMzGxYPrl43pHR7bujYjfV0BdGWHzOJiPMiojcient6av7nvpl12AsmThhSuj03tDuI/DENRZH+PpLS+4GppXJ7prRG6XvWSDezEWrBrP2Z0N21WdqE7i4WzNq/Qy2yZrQ7iCwGKjOs5lH8NGol/cQ0S+tIYE0a9loCzJQ0Kd1QnwksSXlPSDoyzco6sbQvMxuB5h46hU+/+WCmTJyAgCkTJ/DpNx/M3EPrjlTbc8CwfQGjpEspfud6N0krKWZZLQSukHQSxW89vy0VvwY4DlhB8TvQ7wGIiFWSzqT4LW+AT0ZE5Wb9+ylmgE2g+A3la4erL2bWHnMPneKgMcKMud9Y7+3tDX+Lr5lZ8yQtjYjeWnn+j3UzM8vmIGJmZtkcRMzMLJuDiJmZZXMQMTOzbA4iZmaWzUHEzMyyOYiYmVk2BxEzM8vmIGJmZtkcRMzMLJuDiJmZZXMQMTOzbA4iZmaWzUHEzMyyOYiYmVk2BxEzM8vmIGJmZtkcRMzMLJuDiJmZZXMQMTOzbA4iZmaWzUHEzMyyOYiYmVk2BxEzM8vmIGJmZtkcRMzMLJuDiJmZZXMQMTOzbA4iZmaWzUHEzMyydSSISPqwpOWSbpd0qaTtJO0j6RZJKyRdLmmbVHbbtL4i5U8r7efUlH6npFmd6IuZ2VjW9iAiaQrwT0BvRBwEdAEnAJ8BPh8RLwIeB05Km5wEPJ7SP5/KIemAtN2BwGzgy5K62tkXM7OxrlPDWeOBCZLGA9sDDwGvA65M+RcBc9PynLROyj9aklL6ZRHxdETcA6wADm9T+83MjA4EkYjoBz4L3E8RPNYAS4HVEbEhFVsJTEnLU4AH0rYbUvldy+k1ttmMpPmS+iT1DQwMtLZDZmZjWCeGsyZRXEXsA7wA2IFiOGrYRMR5EdEbEb09PT3DWZWZ2ZjSieGsY4B7ImIgItYDVwEzgIlpeAtgT6A/LfcDUwFS/i7AY+X0GtuYmVkbdCKI3A8cKWn7dG/jaOAO4Ebg+FRmHvC9tLw4rZPyb4iISOknpNlb+wDTgV+0qQ9mZkZxg7utIuIWSVcCvwI2AMuA84CrgcsknZXSzk+bnA9cImkFsIpiRhYRsVzSFRQBaAPwgYjY2NbOmJmNcSpO6seO3t7e6Ovr63QzzMxGDElLI6K3Vp7/Y93MzLI5iJiZWTYHETMzy+YgYmZm2RxEzMwsm4OImZllcxAxM7NsDiJmZpbNQcTMzLI5iJiZWTYHETMzy+YgYmZm2RxEzMwsm4OImZllcxAxM7NsDiJmZpbNQcTMzLI5iJiZWTYHETMzy+YgYmZm2RxEzMwsm4OImZllcxAxM7NsDiJmZpbNQcTMzLI5iJiZWTYHETMzy+YgYmZm2RxEzMwsm4OImZll60gQkTRR0pWSfifpt5JeKWmypOsk3ZX+TkplJekcSSsk3SrpsNJ+5qXyd0ma14m+mJmNZZ26Evki8IOIeDFwCPBb4BTg+oiYDlyf1gGOBaanx3zgXABJk4HTgSOAw4HTK4HHzMzao+1BRNIuwF8B5wNExF8iYjUwB7goFbsImJuW5wAXR+FmYKKkPYBZwHURsSoiHgeuA2a3sStmZmNeJ65E9gEGgK9LWibpa5J2AHaPiIdSmYeB3dPyFOCB0vYrU1q99C1Imi+pT1LfwMBAC7tiZja2dSKIjAcOA86NiEOBP/Hs0BUAERFAtKrCiDgvInojorenp6dVuzUzG/M6EURWAisj4pa0fiVFUPljGqYi/X0k5fcDU0vb75nS6qWbmVmbtD2IRMTDwAOS9k9JRwN3AIuBygyrecD30vJi4MQ0S+tIYE0a9loCzJQ0Kd1Qn5nSzMysTcZ3qN4PAt+UtA1wN/AeioB2haSTgPuAt6Wy1wDHASuAtaksEbFK0pnAL1O5T0bEqvZ1wczMVNx+GDt6e3ujr6+v080wMxsxJC2NiN5aef6PdTMzy+YgYmZm2RxEzMwsm4OImZllcxAxM7NsDiJmZpbNQcTMzLI5iJiZWTYHETMzy+YgYmZm2RxEzMwsm4OImZllqxtEJF0jaVr7mmJmZiNNoyuRrwM/lHSapO52NcjMzEaOur8nEhHflnQt8AmgT9IlwDOl/M+1oX1mZvYcNtiPUv2F4jfQtwV2ohREzMzM6gYRSbOBz1H8PO1hEbG2ba0yM7MRodGVyGnAWyNiebsaY2ZmI0ujeyKvbmdDzMxs5PH/iZiZWTYHETMzy+YgYmZm2RxEzMwsm4OImZllcxAxM7NsDiJmZpbNQcTMzLI5iJiZWTYHETMzy+YgYmZm2RxEzMwsW8eCiKQuScsk/Uda30fSLZJWSLpc0jYpfdu0viLlTyvt49SUfqekWZ3piZnZ2NXJK5EPAb8trX8G+HxEvAh4HDgppZ8EPJ7SP5/KIekA4ATgQGA28GVJXW1qu5mZ0aEgImlP4PXA19K6gNcBV6YiFwFz0/KctE7KPzqVnwNcFhFPR8Q9wArg8Pb0wMzMoHNXIl8APsqzP7e7K7A6Ijak9ZXAlLQ8BXgAIOWvSeU3pdfYZjOS5kvqk9Q3MDDQyn6YmY1pbQ8ikt4APBIRS9tVZ0ScFxG9EdHb09PTrmrNzEa9Rj+PO1xmAG+SdBywHbAz8EVgoqTx6WpjT6A/le8HpgIrJY0HdgEeK6VXlLcxM7M2aPuVSEScGhF7RsQ0ihvjN0TEO4EbgeNTsXnA99Ly4rROyr8hIiKln5Bmb+0DTAd+0aZumJkZnbkSqedjwGWSzgKWAeen9POBSyStAFZRBB4iYrmkK4A7gA3AByJiY/ubbWY2dqk4qR87ent7o6+vr9PNMDMbMSQtjYjeWnn+j3UzM8vmIGJmZtkcRMzMLJuDiJmZZXMQMTOzbA4iZmaWzUHEzMyyOYiYmVk2BxEzM8vmIGJmZtkcRMzMLJuDiJmZZXMQMTOzbA4iZmaWzUHEzMyyOYiYmVk2BxEzM8vmIGJmZtkcRMzMLJuDiJmZZXMQMTOzbA4iZmaWzUHEzMyyOYiYmVk2BxEzM8vmIGJmZtkcRMzMLJuDiJmZZXMQMTOzbA4iZmaWre1BRNJUSTdKukPSckkfSumTJV0n6a70d1JKl6RzJK2QdKukw0r7mpfK3yVpXrv7YmY21nXiSmQD8JGIOAA4EviApAOAU4DrI2I6cH1aBzgWmJ4e84FzoQg6wOnAEcDhwOmVwGNmZu3R9iASEQ9FxK/S8pPAb4EpwBzgolTsImBuWp4DXByFm4GJkvYAZgHXRcSqiHgcuA6Y3caumJmNeR29JyJpGnAocAuwe0Q8lLIeBnZPy1OAB0qbrUxp9dJr1TNfUp+kvoGBgZa138xsrOtYEJG0I/Ad4J8j4olyXkQEEK2qKyLOi4jeiOjt6elp1W7NzMa8jgQRSd0UAeSbEXFVSv5jGqYi/X0kpfcDU0ub75nS6qWbmVmbdGJ2loDzgd9GxOdKWYuBygyrecD3SuknpllaRwJr0rDXEmCmpEnphvrMlGZmZm0yvgN1zgDeBdwm6dcp7V+BhcAVkk4C7gPelvKuAY4DVgBrgfcARMQqSWcCv0zlPhkRq9rTBTMzA1Bx+2Hs6O3tjb6+vk43w8xsxJC0NCJ6a+X5P9bNzCybg4iZmWVzEDEzs2wOImZmls1BxMzMsjmImJlZNgcRMzPL5iBiZmbZHETMzCybg4iZmWVzEDEzs2wOImZmls1BxMzMsjmImJlZNgcRMzPL5iBiZmbZHETMzCybg4iZmWVzEDEzs2wOImZmls1BxMzMsjmImJlZNgcRMzPL5iBiZmbZHETMzCzb+E43wFpn0bJ+zl5yJw+uXscLJk5gwaz9mXvolE43y8xGMQeRUWLRsn5Oveo21q3fCED/6nWcetVtAA4kZjZsPJw1Spy95M5NAaRi3fqNnL3kzg61yMzGAgeRUeLB1euGlG5m1goOIqPECyZOGFK6mVkrOIiMEgtm7c+E7q7N0iZ0d7Fg1v4dapGZjQUj/sa6pNnAF4Eu4GsRsXC46lq0rJ8zFi9n9br1AOywTRfPRLBu/TMATNq+m9PfeOBmN7IrM6b6V6+jS2JjBFPSzCmAj33nVp7e8Mym8jP2ncw33/vKmvXVM3FCN2e86UA+/eaDt5idBTBj4Q08uHodE7rHsW79M0TV9rXa3cyxaNSverPEmplBVi6zXfc4nt7wDM8EdEm8/YipnDX34C3289oX93D1rQ/x+Npnj9Wk7bt5/Uv34MbfDfDg6nXsMqEbCVavXV+3Xf2r1yHYdIwEvGrfydz72Lohz3prpq8fX3Qbl97yABsjNvWvd+/JDber3uaFPdtz98BaNsazz2zlOZmY+vz42vWb0mo9X//2/eWbjl3l9TT30Cl1+1Dr+a/8LR+/cWLTc1er7lrHv1bbK/upPCcBNfdx6lW3bno/NjJxQjdvOOTZ10blNVRer+7rUF/Pi5b1Nzyutd7b5fdizmzL6joryp8rraaI6o+UkUNSF/B74K+BlcAvgbdHxB31tunt7Y2+vr4h17VoWT8Lvv0b1j/T+Hh1d4mzjz9k04ugPGNqs3LjxIZnYosPdCie8Lf27tVUfeX9nf3WQ7YIYPXqb9TuwTTsV5cg2KzdE7q7+PSbDwbYYrtK3uYfBI3bPGPfyfzq/jVN9auRRu1qZrtGx6pWP6q3+/ii2/jGzfdvsW3XOLGxxvGbe+iUutvk6u4q6qp+mXWPE397+FS+s7R/iz685eVTtkjPkXv86+3j5Mt/zeDhY2j7rtXXZl7PAAuu/A3rN25+YCvH9fJfPFD3vd3dJf72FbWPfaPX3aJl/TXrrNiaQCJpaUT01swb4UHklcAZETErrZ8KEBGfrrdNbhCZsfAG+pu8ST1l4gR+esrrhrRNrX0MddtKvRVDrb96+3py+jUl3ZuptV253q05ZjkatWuw7Rodq3r9KG+376nXbHb10Ex9Q9lma1WuCJpNz5F7/Fu9j3rq9XWw13Oj9jRz/BrVW+9118x7596Fr2+YX0+jIDLSh7OmAA+U1lcCR1QXkjQfmA+w1157ZVU0lFlOlbJbMzMqZ9vqbYa6j2bLt6Jt9fLaPZsst77BtmtmttxQPogr27UrgDSqq5VtaMXzPZyvmXp9bfb1PJR9Dne9w2VM3FiPiPMiojcient6erL2MZRZTpWyWzMzKmfb6m2Guo9my+e2rZkZZO2eTdaoXYNtl5NfTu+ShlzfULbZWvXqamUbco9/q/dRT72+DvZ6btSeZo5fo3rr6dRMzJEeRPqBqaX1PVNayy2YtT/d4wZ/8ru7tOlmZa0ZU5vKjRP19jZj38lN11feX/VMrEb1N2r3YBr2q0tbtLsyS6yZGWTNtHnGvpOb7lcjjdrVzHaNNNPXtx8xtXozoLgnUm+7etvk6u4StV5m3eOKm/y1+lArPUfu8a+3j1Z/mNXrazOv5wWz9i/uD1apHNdG7+3urvrHvtHrrl6dFTP2nVw3b2uM9OGsXwLTJe1DETxOAN4xHBVVbmYNZXZW5W/u7Kzq+uopz/qo1ebKDI9Wzc5qpl+NZpU0yqtuc7tmZ5X704rZWdX9qLXdWXOLG7BDmZ1Va5vhnJ1Vry2V9FbNzqr1ehrq7CxgWGZnDTZbrlFeo+M62OysweqtVsnz7KwhknQc8AWKKb4XRMS/Nyqfe2PdzGysGs031omIa4BrOt0OM7OxaKTfEzEzsw5yEDEzs2wOImZmls1BxMzMso342VlDJWkAuC9z892AR1vYnJFgrPXZ/R3dxlp/oTV93jsiav6n9pgLIltDUl+9aW6j1Vjrs/s7uo21/sLw99nDWWZmls1BxMzMsjmIDM15nW5AB4y1Pru/o9tY6y8Mc599T8TMzLL5SsTMzLI5iJiZWTYHkRokzZZ0p6QVkk6pkb+tpMtT/i2SprW/la3TRH9PlnSHpFslXS9p7060s5UG63Op3FskhaQRPS20mf5Kelt6npdL+la729hKTbym95J0o6Rl6XV9XCfa2SqSLpD0iKTb6+RL0jnpeNwq6bCWVR4RfpQeFF8p/wfghcA2wG+AA6rKvB/4Slo+Abi80+0e5v6+Ftg+Lf/DSO5vs31O5XYCfgTcDPR2ut3D/BxPB5YBk9L68zrd7mHu73nAP6TlA4B7O93urezzXwGHAbfXyT8OuJbi51iOBG5pVd2+EtnS4cCKiLg7Iv4CXAbMqSozB7goLV8JHC218XdLW2vQ/kbEjRGxNq3eTPELkiNZM88xwJnAZ4A/t7Nxw6CZ/r4X+FJEPA4QEY+0uY2t1Ex/A9g5Le8CPNjG9rVcRPwIWNWgyBzg4ijcDEyUtEcr6nYQ2dIU4IHS+sqUVrNMRGwA1gC7tqV1rddMf8tOojijGckG7XO63J8aEVe3s2HDpJnneD9gP0k/lXSzpNlta13rNdPfM4C/k7SS4veIPtiepnXMUN/nTRvxP0pl7SPp74Be4DWdbstwkjQO+Bzw7g43pZ3GUwxpHUVxpfkjSQdHxOqOtmr4vB24MCL+t6RXApdIOigiBv9tXduMr0S21A9MLa3vmdJqlpE0nuJy+LG2tK71mukvko4BTgPeFBFPt6ltw2WwPu8EHATcJOleijHkxSP45nozz/FKYHFErI+Ie4DfUwSVkaiZ/p4EXAEQET8HtqP4osLRqqn3eQ4HkS39EpguaR9J21DcOF9cVWYxMC8tHw/cEOnu1Qg0aH8lHQp8lSKAjOSx8oqGfY6INRGxW0RMi4hpFPeB3hQRfZ1p7lZr5jW9iOIqBEm7UQxv3d3ORrZQM/29HzgaQNJLKILIQFtb2V6LgRPTLK0jgTUR8VArduzhrCoRsUHSPwJLKGZ5XBARyyV9EuiLiMXA+RSXvysobmad0LkWb50m+3s2sCPw7TR/4P6IeFPHGr2VmuzzqNFkf5cAMyXdAWwEFkTEiLy6brK/HwH+n6QPU9xkf/cIPhFE0qUUJwG7pfs8pwPdABHxFYr7PscBK4C1wHtaVvcIPm5mZtZhHs4yM7NsDiJmZpbNQcTMzLI5iJiZWTYHETMzy+YgYtZBkqZKukfS5LQ+Ka1P62zLzJrjIGLWQRHxAHAusDAlLQTOi4h7O9YosyHw/4mYdZikbmApcAHFt+m+LCLWd7ZVZs3xf6ybdVhErJe0APgBMNMBxEYSD2eZPTccCzxE8cWPZiOGg4hZh0l6GfDXFN8W/MznzS0AAABqSURBVOFW/ViQWTs4iJh1UPpFzHOBf46I+ym+7PKznW2VWfMcRMw6670U34p8XVr/MvASSaP6h79s9PDsLDMzy+YrETMzy+YgYmZm2RxEzMwsm4OImZllcxAxM7NsDiJmZpbNQcTMzLL9F4Tt5EJjU3VHAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import scipy.stats\n",
"\n",
"x = np.random.rand(100)\n",
"y = 10*x + np.random.randn(100)\n",
"y[0] = 300\n",
"y[1] = 10000\n",
"corr = scipy.stats.spearmanr(x,y)[0]\n",
"\n",
"plt.scatter(x,y)\n",
"plt.xlabel('X')\n",
"plt.ylabel('Y')\n",
"plt.title('Correleation = '+ str(corr))\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}