This repository has been archived by the owner on Aug 6, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhpo.py
executable file
·287 lines (233 loc) · 8.6 KB
/
hpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#!/usr/bin/env python
import os
from pathlib import Path
from typing import Any, Optional, Type
from dataclasses import dataclass, asdict
from datetime import datetime
from deepmeteor.models.base import ModelConfigBase
import torch
from torch import nn
from torch.utils.data import DataLoader
from optuna import Trial
from coolname import generate_slug
from hierconfig.config import ConfigBase, config_field
from torchhep.optuna.objective import ObjectiveBase
from torchhep.optuna.study import run_study
from torchhep.optim import configure_optimizers
from torchhep.utils.cuda import select_idle_gpu
import torchhep.optuna.hyperparameter as hp
from deepmeteor import training
from deepmeteor.data.dataset import MeteorDataset
from deepmeteor.data.transformations import DataTransformation
from deepmeteor.data.transformations import Standardization
from deepmeteor.data.eventweighting import EventWeightingConfig
from deepmeteor.losses.utils import find_loss_cls
from deepmeteor.models.utils import find_model_config_cls
from deepmeteor.training import DataTransformationConfig
from deepmeteor.training import OptimizerConfig
@dataclass
class DataConfig(ConfigBase):
data_dir: Optional[str] = None
train: list[str] = config_field(default_factory=list) # FIXME
val: list[str] = config_field(default_factory=list) # FIXME
batch_size: int = 256
eval_batch_size: int = 512
max_size: Optional[int] = 100
entry_start: Optional[int] = None
entry_stop: Optional[int] = None
def __post_init__(self):
if self.data_dir is None:
self.data_dir = os.getenv('PROJECT_DATA_DIR')
if len(self.train) == 0:
self.train.append('perfNano_TTbar_PU200.110X_set0.root')
if len(self.val) == 0:
self.val.append('perfNano_TTbar_PU200.110X_set4.root')
@property
def train_files(self) -> list[str]:
return [os.path.join(self.data_dir, each) for each in self.train]
@property
def val_files(self) -> list[str]:
return [os.path.join(self.data_dir, each) for each in self.val]
@dataclass
class TrainingConfig(ConfigBase):
max_grad_norm: float = 1
@dataclass
class ObjectiveConfig(ConfigBase):
num_epochs: int = 50
@dataclass
class StudyConfig(ConfigBase):
n_trials: int = 200
timeout: Optional[int] = None
name: str = 'study'
@dataclass
class Config(ConfigBase):
model: str = 'Transformer'
data: DataConfig = DataConfig()
data_transformation: DataTransformationConfig = DataTransformationConfig()
event_weighting: EventWeightingConfig = EventWeightingConfig()
optimizer: OptimizerConfig = OptimizerConfig()
training: TrainingConfig = TrainingConfig()
objective: ObjectiveConfig = ObjectiveConfig()
study: StudyConfig = StudyConfig()
cuda: int = config_field(
default=0,
help='automatically select an idle gpu')
num_threads: int = 1
log_base: Optional[str] = None
log_name: Optional[str] = None
mode: str = config_field(default='run', choices=('run', 'sanity-check', 'batch'))
def __post_init__(self):
if self.cuda < 0:
self.cuda = select_idle_gpu(as_idx=True)
if self.log_base is None:
self.log_base = os.getenv('PROJECT_LOG_DIR')
if self.log_name is None:
now = datetime.now().strftime('%y%m%d-%H%M%S')
slug = generate_slug(pattern=2)
self.log_name = f'optuna_{self.mode}_{now}_{slug}'
if self.mode == 'sanity-check':
self.data.entry_stop = 2048
self.study.n_trials = 5
self.objective.num_epochs = 2
@property
def log_dir(self) -> Path:
return Path(self.log_base) / self.log_name
@property
def batch_mode(self) -> bool:
return self.mode == 'batch'
class Objective(ObjectiveBase):
def __init__(self,
num_epochs: int,
model_config_cls: Type[ModelConfigBase],
train_loader: DataLoader,
val_loader: DataLoader,
data_xform: DataTransformation,
device: torch.device,
config: Config
) -> None:
"""
"""
super().__init__(num_epochs=num_epochs)
self.model_config_cls = model_config_cls
# attrs
self.train_loader = train_loader
self.val_loader = val_loader
self.data_xform = data_xform
self.device = device
self.config = config
def suggest(self, trial: Trial) -> dict[str, Any]:
model_config = self.model_config_cls.from_trial(trial)
loss_name = trial.suggest_categorical(name='loss',
choices=('L1Loss', 'MSELoss', 'HuberLoss'))
model = model_config.build().to(self.device)
loss_fn = find_loss_cls(loss_name)(reduction='none').to(self.device)
optimizer = configure_optimizers(model, **asdict(self.config.optimizer))
return {
'model': model,
'loss_fn': loss_fn,
'optimizer': optimizer,
}
def train(self, suggestion: dict[str, Any]):
return training.train(
model=suggestion['model'],
data_loader=self.train_loader,
loss_fn=suggestion['loss_fn'],
optimizer=suggestion['optimizer'],
device=self.device,
config=self.config,
monitor=None,
lr_scheduler=None,
)
def validate(self, suggestion: dict[str, Any]):
return training.evaluate(
model=suggestion['model'],
data_loader=self.val_loader,
data_xform=self.data_xform,
loss_fn=suggestion['loss_fn'],
device=self.device,
config=self.config,
phase=training.PhaseEnum.VALIDATION_OPTUNA,
output_dir=None,
epoch=None,
)
@classmethod
@property
def target_name(cls):
return "reduced_chi2_pt_ratio"
@classmethod
@property
def direction(cls):
return "minimize"
def run(config: Config):
print(config)
log_dir = Path(config.log_dir) # type: ignore
log_dir.mkdir(parents=True)
config.to_yaml(log_dir / 'config.yaml')
###########################################################################
# ⭐ sys
###########################################################################
torch.set_num_threads(config.num_threads)
device = torch.device(f'cuda:{config.cuda}')
###########################################################################
# ⭐ data
###########################################################################
data_xform = Standardization.from_dict(asdict(config.data_transformation))
event_weighting = config.event_weighting.build()
train_set = MeteorDataset.from_root(
path_list=config.data.train_files,
transformation=data_xform,
event_weighting=event_weighting,
entry_start=config.data.entry_start,
entry_stop=config.data.entry_stop,
)
print(f'{len(train_set)=}')
val_set = MeteorDataset.from_root(
path_list=config.data.val_files,
transformation=data_xform,
event_weighting=event_weighting,
entry_start=config.data.entry_start,
entry_stop=config.data.entry_stop,
)
print(f'{len(val_set)=}')
train_loader = DataLoader(
dataset=train_set,
batch_size=config.data.batch_size,
collate_fn=MeteorDataset.collate,
drop_last=True,
shuffle=True
)
val_loader = DataLoader(
dataset=val_set,
batch_size=config.data.eval_batch_size,
collate_fn=MeteorDataset.collate,
drop_last=False,
shuffle=False
)
###########################################################################
# ⭐ model, loss function and optimizer
###########################################################################
model_config_cls = find_model_config_cls(config.model)
###########################################################################
# ⭐
###########################################################################
objective = Objective(
num_epochs=config.objective.num_epochs,
model_config_cls=model_config_cls,
train_loader=train_loader,
val_loader=val_loader,
data_xform=data_xform,
device=device,
config=config,
)
run_study(
objective=objective,
log_dir=log_dir,
n_trials=config.study.n_trials,
timeout=config.study.timeout,
name=config.study.name,
)
def main():
config = Config.from_args()
run(config)
if __name__ == "__main__":
main()