This repository has been archived by the owner on Aug 6, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathretrain.py
executable file
·409 lines (342 loc) · 13 KB
/
retrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
#!/usr/bin/env python
import os
from dataclasses import asdict, dataclass
from pathlib import Path
from datetime import datetime
from typing import Optional
import json
import argparse
import torch
from torch.utils.data import DataLoader
import matplotlib as mpl
import mplhep as hep
import uproot
import uproot.writing
import yaml
from coolname import generate_slug
from torchhep.optim import configure_optimizers
from torchhep.utils.checkpoint import Checkpoint
from torchhep.utils.cuda import select_idle_gpu
from torchhep.utils.reproducibility import sample_seed
from torchhep.utils.reproducibility import set_seed
from hierconfig.config import config_field, ConfigBase
from deepmeteor.models.utils import find_model_config_cls
from deepmeteor.data.dataset import MeteorDataset
from deepmeteor.data.transformations import Standardization
from deepmeteor.data.eventweighting import EventWeightingConfig
from deepmeteor.losses.utils import find_loss_cls
from deepmeteor.result import EvaluationResult
from deepmeteor.result import EpochResult
from deepmeteor.result import Summary
from deepmeteor.learningcurve import Monitor
from deepmeteor.training import DataTransformationConfig
from deepmeteor.training import OptimizerConfig
from deepmeteor.training import train
from deepmeteor.training import evaluate
from deepmeteor.training import PhaseEnum
from deepmeteor.training import save_histogram_plots
from deepmeteor import env
@dataclass
class DataConfig(ConfigBase):
data_dir: Optional[str] = None
train: list[str] = config_field(default_factory=list) # FIXME
val: list[str] = config_field(default_factory=list) # FIXME
test: list[str] = config_field(default_factory=list) # FIXME
batch_size: int = 256
eval_batch_size: int = 512
max_size: Optional[int] = 100
pt_topk: bool = False
entry_start: Optional[int] = None
entry_stop: Optional[int] = None
train_cut: Optional[str] = None
eval_cut: Optional[str] = None
def __post_init__(self):
self.data_dir = self.data_dir or str(env.DATA_DIR)
@property
def train_files(self) -> list[str]:
return [os.path.join(self.data_dir, each) for each in self.train] # type: ignore
@property
def val_files(self) -> list[str]:
return [os.path.join(self.data_dir, each) for each in self.val] # type: ignore
@property
def test_files(self) -> list[str]:
return [os.path.join(self.data_dir, each) for each in self.test] # type: ignore
@dataclass
class TrainingConfig(ConfigBase):
loss: str = config_field(default='HuberLoss',
choices=('L1Loss',' MSELoss', 'HuberLoss'))
num_epochs: int = 10
max_grad_norm: float = 1
num_epochs: int = 10
@dataclass
class FinetuningConfig(ConfigBase):
src: str
data: DataConfig = DataConfig()
data_transformation: DataTransformationConfig = DataTransformationConfig()
event_weighting: EventWeightingConfig = EventWeightingConfig()
optimizer: OptimizerConfig = OptimizerConfig()
training: TrainingConfig = TrainingConfig()
log_base: Optional[str] = None
log_name: Optional[str] = None
cuda: int = config_field(
default=0,
help='automatically select an idle gpu')
seed: int = config_field(
default=1337,
help=('if a negative value is given, then this is set to a random '
'number using os.random.'))
deterministic: bool = config_field(default=False,
help='use deterministic algorithms')
num_threads: int = 1
sanity_check: bool = False
batch: bool = False
@property
def mode(self):
mode = 'finetuning'
if self.sanity_check:
mode = f'sanity-check_{mode}'
return mode
def __post_init__(self):
self.log_base = self.log_base or env.LOG_DIR
if self.cuda < 0:
self.cuda = select_idle_gpu(as_idx=True)
if self.log_name is None:
now = datetime.now().strftime('%y%m%d-%H%M%S')
slug = generate_slug(pattern=2)
self.log_name = f'{self.mode}_{now}_{slug}' # TODO
if self.seed < 0:
self.seed = sample_seed()
if self.sanity_check:
self.data.train = self.data.train[0:1]
self.data.val = self.data.val[0:1]
self.data.test = self.data.test[0:1]
self.data.entry_start = 0
self.data.entry_stop = 4096
self.training.num_epochs = 2
@property
def src_dir(self) -> Path:
return Path(self.src)
@property
def log_dir(self) -> Path:
return Path(self.log_base) / self.log_name # type: ignore
def run(config: FinetuningConfig) -> None:
mpl.use('agg')
hep.style.use(hep.styles.CMS)
print(str(config))
log_dir = config.log_dir
log_dir.mkdir(parents=True)
config.to_yaml(log_dir / 'config.yaml')
src_dir = config.src_dir
with open(src_dir / 'config.yaml') as stream:
src_config = yaml.safe_load(stream)
model_name = src_config['model']['name']
model_config_cls = find_model_config_cls(model_name)
model_config = model_config_cls.from_dict(src_config['model'])
###########################################################################
# ⭐ sys
###########################################################################
set_seed(config.seed)
torch.set_num_threads(config.num_threads)
if config.deterministic:
# CUBLAS_WORKSPACE_CONFIG=:4096:8 or CUBLAS_WORKSPACE_CONFIG=:16:8
# https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
torch.use_deterministic_algorithms(config.deterministic)
device = torch.device(f'cuda:{config.cuda}')
print(f'{device=}: {torch.cuda.get_device_properties(device)}')
###########################################################################
# ⭐ model, loss function and optimizer
###########################################################################
model = model_config.build().to(device)
if src_config['compile']:
model = torch.compile(model)
checkpoint = torch.load(src_dir / 'checkpoint' / 'best_checkpoint.pt',
map_location=device)
model.load_state_dict(checkpoint['model'])
del checkpoint
print(model)
print(f'# of parameters = {model.num_parameters}')
# optimizer
optimizer = configure_optimizers(model, **asdict(config.optimizer))
# FIXME optimizer
print(optimizer)
lr_scheduler = None
# loss function
loss_fn = find_loss_cls(config.training.loss)(reduction='none').to(device)
###########################################################################
# ⭐ dataset
###########################################################################
# TODO
data_xform = Standardization.from_dict(asdict(config.data_transformation))
event_weighting = config.event_weighting.build()
train_set = MeteorDataset.from_root(
path_list=config.data.train_files,
transformation=data_xform,
event_weighting=event_weighting,
entry_start=config.data.entry_start,
entry_stop=config.data.entry_stop,
max_size=config.data.max_size,
pt_topk=config.data.pt_topk,
)
print(f'{len(train_set)=}')
val_set = MeteorDataset.from_root(
path_list=config.data.val_files,
transformation=data_xform,
event_weighting=event_weighting,
entry_start=config.data.entry_start,
entry_stop=config.data.entry_stop,
max_size=config.data.max_size,
pt_topk=config.data.pt_topk,
cut=config.data.eval_cut,
)
print(f'{len(val_set)=}')
train_loader = DataLoader(
dataset=train_set,
batch_size=config.data.batch_size,
collate_fn=MeteorDataset.collate,
drop_last=True,
shuffle=True
)
val_loader = DataLoader(
dataset=val_set,
batch_size=config.data.eval_batch_size,
collate_fn=MeteorDataset.collate,
drop_last=False,
shuffle=False
)
###########################################################################
# ⭐ utils
###########################################################################
checkpoint_dir = log_dir / 'checkpoint'
checkpoint_dir.mkdir()
checkpoint = Checkpoint(checkpoint_dir)
checkpoint.register(
model=model,
optimizer=optimizer,
)
###########################################################################
# ⭐ training phase
###########################################################################
monitor = Monitor()
summary = Summary(
num_parameters=model.num_parameters,
step=-1,
epoch=-1,
# worst
validation=EvaluationResult.worst,
test=EvaluationResult.worst
)
learning_curve_dir = log_dir / 'learning_curve'
learning_curve_dir.mkdir()
with uproot.writing.create(learning_curve_dir / 'validation.root'):
...
for epoch in range(0, 1 + config.training.num_epochs):
print(f'\n🔥 Epoch {epoch}')
if epoch > 0:
train(
model=model,
data_loader=train_loader,
loss_fn=loss_fn,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
epoch=epoch,
device=device,
config=config,
monitor=monitor,
)
val_result = evaluate(
model=model,
data_loader=val_loader,
data_xform=data_xform,
loss_fn=loss_fn,
device=device,
phase=PhaseEnum.VALIDATION,
output_dir=learning_curve_dir,
config=config,
epoch=epoch,
)
monitor.epoch.append(EpochResult(epoch=epoch, step=monitor.last_step))
monitor.validation.append(val_result)
monitor.to_csv(learning_curve_dir)
if epoch >= 1:
monitor.draw_all(output_dir=learning_curve_dir)
print(str(val_result))
checkpoint.step(loss=val_result.loss, epoch=epoch)
if val_result.loss < summary.validation.loss:
summary.step = monitor.last_step
summary.epoch = epoch
summary.validation = val_result
###########################################################################
# ⭐ test phase
###########################################################################
print('\n\n⭐ test phase')
eval_dir = log_dir / 'eval'
eval_dir.mkdir()
test_dir = eval_dir / 'test'
test_dir.mkdir()
print(f'loading {checkpoint.best_path}')
model.load_state_dict(checkpoint.best_state_dict['model'])
test_set = MeteorDataset.from_root(
path_list=config.data.test_files,
transformation=data_xform,
event_weighting=event_weighting,
entry_start=config.data.entry_start,
entry_stop=config.data.entry_stop,
max_size=config.data.max_size,
pt_topk=config.data.pt_topk,
)
print(f'{len(test_set)=}')
test_loader = DataLoader(
dataset=test_set,
batch_size=config.data.eval_batch_size,
collate_fn=MeteorDataset.collate,
drop_last=False,
shuffle=False,
)
test_result = evaluate(
model=model,
data_loader=test_loader,
data_xform=data_xform,
loss_fn=loss_fn,
device=device,
output_dir=test_dir,
phase=PhaseEnum.TEST,
config=config,
epoch=summary.epoch,
)
summary.test = test_result
print(str(test_result))
###########################################################################
# report
###########################################################################
summary.to_json(log_dir / 'summary.json')
monitor.draw_all(output_dir=learning_curve_dir, summary=summary)
with open(log_dir / 'cuda_memory_stats.json', 'w') as stream:
json.dump(torch.cuda.memory_stats(device), stream, indent=2)
print(torch.cuda.memory_summary())
hist_dir = test_dir / 'hist'
hist_dir.mkdir()
print('🎨 saving histogram plots')
save_histogram_plots(
input_path=(test_dir / 'test.root'),
output_dir=hist_dir
)
###########################################################################
# ⭐ finish
###########################################################################
print('🎉 Done!!!')
def main():
parser = argparse.ArgumentParser()
parser.add_argument('config', type=Path, help='Help text')
# parser.add_argument('--src', type=Path, help='Help text')
parser.add_argument('--sanity-check', action='store_true', help='Help text')
parser.add_argument('--batch', action='store_true', help='Help text')
args = parser.parse_args()
with open(args.config) as stream:
data = yaml.safe_load(stream)
data['sanity_check'] = args.sanity_check
data['batch'] = args.batch
config = FinetuningConfig.from_dict(data)
run(config)
if __name__ == '__main__':
main()