diff --git a/README.md b/README.md index a0315a56..b0f2aae1 100644 --- a/README.md +++ b/README.md @@ -12,14 +12,18 @@ Also, my articles on the Medium platform can be found [here](https://medium.com/ - [Credit card fraud detection](anomaly-detection/fraud-detection.ipynb): detecting fraudulent transactions in a dataset using neural networks +## :factory: Automation + +- [Auto commit to GitHub](automation/auto-commit): automating the process of committing and pushing changes to GitHub + ## :camera: Computer Vision - [Ants vs bees image classification](computer-vision/ants-bees-classification/image-classification.ipynb): an app for classification of images, employing deep learning models ## 🧩 Data Structures -- [Sorting](data-structure/sorting-popular.ipynb): a guide to popular sorting algorithms in Python - [Hashing](data-structure/hashing.ipynb): an introduction to hashing, its applications, and Python implementation +- [Sorting](data-structure/sorting-popular.ipynb): a guide to popular sorting algorithms in Python ## :mag: EDA (Exploratory Data Analysis) @@ -36,10 +40,9 @@ Also, my articles on the Medium platform can be found [here](https://medium.com/ - [KerasTuner](hypertune/kerasTuner.ipynb): hyperparameter tuning using [KerasTuner](https://keras.io/keras_tuner/) library - [Optuna](hypertune/optuna.ipynb): hyperparameter tuning with [Optuna](https://optuna.org/) library -## :package: Miscellaneous +## :robot: Machine Learning -- [Auto commit](misc/auto-commit): automating the process of committing and pushing changes to GitHub -- [Finding best threshold for logistic regression](misc/threshold-logistic-regression.ipynb): different methods to find the optimal threshold for logistic regression +- [Best threshold for logistic regression](machine-learning/threshold-logistic-regression.ipynb): different methods to find the optimal threshold for logistic regression ## :lock: Privacy @@ -48,9 +51,10 @@ Also, my articles on the Medium platform can be found [here](https://medium.com/ ## :snake: Python -- [Lambda](python/lambda.ipynb): an introduction to lambda functions in Python -- [Generators](python/generator.ipynb): a hands-on guide to Python generators -- [Pattern matching](python/match-case.ipynb): a guide to pattern matching in Python with `match-case` statement +- [Argument parsing](python/argparse.ipynb): a guide to argument parsing using `argparse` module +- [Generators](python/generator.ipynb): a hands-on guide to generators +- [Lambda](python/lambda.ipynb): an introduction to lambda functions +- [Pattern matching](python/match-case.ipynb): a guide to pattern matching with `match-case` statement ## :chart_with_upwards_trend: Statistical analysis @@ -63,13 +67,13 @@ Also, my articles on the Medium platform can be found [here](https://medium.com/ ## :desktop_computer: Terminal -- [Rich](terminal/rich/rich.ipynb): formatting text in the terminal using [Rich](https://github.com/Textualize/rich) library - [jq](terminal/jq.ipynb): JSON manipulating with [jq](https://jqlang.github.io/jq/) +- [Rich](terminal/rich/rich.ipynb): formatting text in the terminal using [Rich](https://github.com/Textualize/rich) library ## :hourglass_flowing_sand: Time-series -- [Prevent overfitting](time-series/prevent-overfitting.ipynb): preventing overfitting in time series forecasting using different techniques - [Forecasting with sktime](time-series/sktime.ipynb): time-series forecasting using [sktime](https://github.com/sktime/sktime) library +- [Prevent overfitting](time-series/prevent-overfitting.ipynb): preventing overfitting in time series forecasting using different techniques ## :art: Visualization