forked from ntgiang71096/vfdetector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvulfixminer.py
322 lines (250 loc) · 10.5 KB
/
vulfixminer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import torch
from torch import nn as nn
import os
from torch.utils.data import DataLoader
from torch.nn import functional as F
from torch import cuda
from sklearn import metrics
import numpy as np
from transformers import AdamW
from transformers import get_scheduler
from patch_entities import VulFixMinerDataset
from model import VulFixMinerClassifier, VulFixMinerFineTuneClassifier
import pandas as pd
from tqdm import tqdm
import utils
import config
import argparse
import vulfixminer_finetune
from transformers import RobertaTokenizer, RobertaModel
import csv
# dataset_name = 'sap_patch_dataset.csv'
# EMBEDDINGS_DIRECTORY = '../finetuned_embeddings/variant_2'
# MODEL_PATH = 'model/patch_variant_2_finetune_1_epoch_best_model.sav'
dataset_name = None
FINETUNE_MODEL_PATH = None
MODEL_PATH = None
TRAIN_PROB_PATH = None
TEST_PROB_PATH = None
directory = os.path.dirname(os.path.abspath(__file__))
model_folder_path = os.path.join(directory, 'model')
# retest with SAP dataset
NUMBER_OF_EPOCHS = 20
EARLY_STOPPING_ROUND = 5
TRAIN_BATCH_SIZE = 64
VALIDATION_BATCH_SIZE = 64
TEST_BATCH_SIZE = 64
TRAIN_PARAMS = {'batch_size': TRAIN_BATCH_SIZE, 'shuffle': True, 'num_workers': 8}
VALIDATION_PARAMS = {'batch_size': VALIDATION_BATCH_SIZE, 'shuffle': True, 'num_workers': 8}
TEST_PARAMS = {'batch_size': TEST_BATCH_SIZE, 'shuffle': True, 'num_workers': 8}
LEARNING_RATE = 1e-5
use_cuda = cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
torch.backends.cudnn.benchmark = True
false_cases = []
CODE_LENGTH = 256
HIDDEN_DIM = 768
NUMBER_OF_LABELS = 2
# model_path_prefix = model_folder_path + '/patch_variant_2_16112021_model_'
def predict_test_data(model, testing_generator, device, need_prob=False, need_feature_only=False, prob_path=None):
y_pred = []
y_test = []
probs = []
urls = []
final_features = []
with torch.no_grad():
model.eval()
for ids, url_batch, embedding_batch, label_batch in tqdm(testing_generator):
embedding_batch, label_batch = embedding_batch.to(device), label_batch.to(device)
outs = model(embedding_batch)
if need_feature_only:
final_features.extend(outs[1].tolist())
outs = outs[0]
outs = F.softmax(outs, dim=1)
y_pred.extend(torch.argmax(outs, dim=1).tolist())
y_test.extend(label_batch.tolist())
probs.extend(outs[:, 1].tolist())
urls.extend(list(url_batch))
precision = metrics.precision_score(y_pred=y_pred, y_true=y_test)
recall = metrics.recall_score(y_pred=y_pred, y_true=y_test)
f1 = metrics.f1_score(y_pred=y_pred, y_true=y_test)
try:
auc = metrics.roc_auc_score(y_true=y_test, y_score=probs)
except Exception:
auc = 0
print("Finish testing")
if prob_path is not None:
with open(prob_path, 'w') as file:
writer = csv.writer(file)
for i, prob in enumerate(probs):
writer.writerow([urls[i], prob])
if need_feature_only:
return f1, urls, final_features
if not need_prob:
return precision, recall, f1, auc
else:
return precision, recall, f1, auc, urls, probs
def train(model, learning_rate, number_of_epochs, training_generator, test_generator):
loss_function = nn.NLLLoss()
optimizer = AdamW(model.parameters(), lr=learning_rate)
num_training_steps = NUMBER_OF_EPOCHS * len(training_generator)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=num_training_steps
)
train_losses = []
for epoch in range(number_of_epochs):
model.train()
total_loss = 0
current_batch = 0
for id_batch, url_batch, embedding_batch, label_batch in training_generator:
embedding_batch, label_batch \
= embedding_batch.to(device), label_batch.to(device)
outs = model(embedding_batch)
outs = F.log_softmax(outs, dim=1)
loss = loss_function(outs, label_batch)
train_losses.append(loss.item())
model.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
total_loss += loss.detach().item()
current_batch += 1
if current_batch % 50 == 0:
print("Train commit iter {}, total loss {}, average loss {}".format(current_batch, np.sum(train_losses),
np.average(train_losses)))
print("epoch {}, training commit loss {}".format(epoch, np.sum(train_losses)))
train_losses = []
model.eval()
print("Result on testing dataset...")
precision, recall, f1, auc = predict_test_data(model=model,
testing_generator=test_generator,
device=device)
print("Precision: {}".format(precision))
print("Recall: {}".format(recall))
print("F1: {}".format(f1))
print("AUC: {}".format(auc))
print("-" * 32)
if torch.cuda.device_count() > 1:
torch.save(model.module.state_dict(), MODEL_PATH)
else:
torch.save(model.state_dict(), MODEL_PATH)
return model
class CommitAggregator:
def __init__(self, file_transformer):
self.tokenizer = RobertaTokenizer.from_pretrained("microsoft/codebert-base")
self.file_transformer = file_transformer
def transform(self, diff_list):
# cap at 20 diffs
diff_list = diff_list[:20]
input_list, mask_list = [], []
for diff in diff_list:
added_code = vulfixminer_finetune.get_code_version(diff=diff, added_version=True)
deleted_code = vulfixminer_finetune.get_code_version(diff=diff, added_version=False)
code = added_code + self.tokenizer.sep_token + deleted_code
input_ids, mask = vulfixminer_finetune.get_input_and_mask(self.tokenizer, [code])
input_list.append(input_ids)
mask_list.append(mask)
input_list = torch.stack(input_list)
mask_list = torch.stack(mask_list)
input_list, mask_list = input_list.to(device), mask_list.to(device)
embeddings = self.file_transformer(input_list, mask_list).last_hidden_state[:, 0, :]
sum_ = torch.sum(embeddings, dim=0)
mean_ = torch.div(sum_, len(diff_list))
mean_ = mean_.detach()
mean_ = mean_.cpu()
return mean_
def do_train(args):
global dataset_name, MODEL_PATH
dataset_name = args.dataset_path
FINETUNE_MODEL_PATH = args.finetune_model_path
MODEL_PATH = args.model_path
TRAIN_PROB_PATH = args.train_prob_path
TEST_PROB_PATH = args.test_prob_path
print("Dataset name: {}".format(dataset_name))
print("Saving model to: {}".format(MODEL_PATH))
print("Loading finetuned file transformer...")
finetune_model = VulFixMinerFineTuneClassifier()
if torch.cuda.device_count() > 1:
# print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
finetune_model = nn.DataParallel(finetune_model)
finetune_model.load_state_dict(torch.load(FINETUNE_MODEL_PATH))
code_bert = finetune_model.module.code_bert
code_bert.eval()
code_bert.to(device)
print("Finished loading")
aggregator = CommitAggregator(code_bert)
patch_data, label_data, url_data = vulfixminer_finetune.get_data(dataset_name)
train_ids, test_ids = [], []
index = 0
id_to_embeddings, id_to_label, id_to_url = {}, {}, {}
for i in tqdm(range(len(patch_data['train']))):
label = label_data['train'][i]
url = url_data['train'][i]
embeddings = aggregator.transform(patch_data['train'][i])
train_ids.append(index)
id_to_embeddings[index] = embeddings
id_to_label[index] = label
id_to_url[index] = url
# all_data.append(embeddings)
# all_label.append(label)
# all_url.append(url)
index += 1
for i in tqdm(range(len(patch_data['test']))):
label = label_data['test'][i]
url = url_data['test'][i]
embeddings = aggregator.transform(patch_data['test'][i])
test_ids.append(index)
id_to_embeddings[index] = embeddings
id_to_label[index] = label
id_to_url[index] = url
# all_data.append(embeddings)
# all_label.append(label)
# all_url.append(url)
index += 1
training_set = VulFixMinerDataset(train_ids, id_to_label, id_to_embeddings, id_to_url)
test_set = VulFixMinerDataset(test_ids, id_to_label, id_to_embeddings, id_to_url)
training_generator = DataLoader(training_set, **TRAIN_PARAMS)
test_generator = DataLoader(test_set, **TEST_PARAMS)
model = VulFixMinerClassifier()
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)
model.to(device)
train(model=model,
learning_rate=LEARNING_RATE,
number_of_epochs=NUMBER_OF_EPOCHS,
training_generator=training_generator,
test_generator=test_generator)
print("Writing result to file...")
predict_test_data(model=model, testing_generator=training_generator, device=device, prob_path=TRAIN_PROB_PATH)
predict_test_data(model=model, testing_generator=test_generator, device=device, prob_path=TEST_PROB_PATH)
print("Finish writting")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='')
parser.add_argument('--dataset_path',
type=str,
required=True,
help='name of dataset')
parser.add_argument('--model_path',
type=str,
required=True,
help='save train model to path')
parser.add_argument('--finetune_model_path',
type=str,
required=True,
help='path to finetune file transfomer')
parser.add_argument('--train_prob_path',
type=str,
required=True,
help='')
parser.add_argument('--test_prob_path',
type=str,
required=True,
help='')
args = parser.parse_args()
do_train(args)