-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathf_WSSA.m
153 lines (112 loc) · 3.67 KB
/
f_WSSA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
function [mbest,stdbest,sem,mFEs,SR,pos,cg_curve] = f_WSSA(N,Max_iter,RUNS,M,mat_HOS,SNR,Nt,lMC)
FEs = 0;
runs = 1;
lb = zeros(15,1);
ub = 1e3*ones(15,1);
dim = length(lb);
accep_level = .08;
CostFunction = @(x,M,mat_HOS,SNR,Nt,lMC) f_ObjFct(x,M,mat_HOS,SNR,Nt,lMC); % Ojbective function
while runs <= RUNS
%Initialize the positions of salps
SalpPositions=initialization(N,dim,ub,lb);
FoodPosition=zeros(1,dim);
FoodFitness=inf;
cMax=1;
cMin=0.00003;
%calculate the fitness of initial salps
for i=1:size(SalpPositions,1)
SalpFitness(1,i)=CostFunction(SalpPositions(i,:),M,mat_HOS,SNR,Nt,lMC);
FEs = FEs + 1;
all_cost(FEs) = SalpFitness(1,i);
cg_curve(runs,FEs) = SalpFitness(1,i);
end
[sorted_salps_fitness,sorted_indexes]=sort(SalpFitness);
for newindex=1:N
Sorted_salps(newindex,:)=SalpPositions(sorted_indexes(newindex),:);
end
FoodPosition=Sorted_salps(1,:);
FoodFitness=sorted_salps_fitness(1);
%Main loop
l=2; % start from the second iteration since the first iteration was dedicated to calculating the fitness of salps
while l<Max_iter+1
c=cMax*rand-l*((cMax-cMin)/Max_iter);
c1 = 2*exp(-(4*l/Max_iter)^2); % Eq. (3.2) in the paper
for i=1:size(SalpPositions,1)
SalpPositions= SalpPositions';
if i<=N/2
for j=1:1:dim
c2=rand();
c3=rand();
%%%%%%%%%%%%% % Eq. (3.1) in the paper %%%%%%%%%%%%%%
if c3<0.5
SalpPositions(j,i)=c*FoodPosition(j)+c1*((ub(j)-lb(j))*c2+lb(j));
else
SalpPositions(j,i)=c*FoodPosition(j)-c1*((ub(j)-lb(j))*c2+lb(j));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
elseif i>N/2 && i<N+1
point1=c*SalpPositions(:,i-1);
point2=SalpPositions(:,i);
SalpPositions(:,i)=(point2+point1)/2; % % Eq. (3.4) in the paper
end
SalpPositions= SalpPositions';
end
for i=1:size(SalpPositions,1)
Tp=SalpPositions(i,:)>ub';Tm=SalpPositions(i,:)<lb';SalpPositions(i,:)=(SalpPositions(i,:).*(~(Tp+Tm)))+ub'.*Tp+lb'.*Tm;
SalpFitness(1,i)=CostFunction(SalpPositions(i,:),M,mat_HOS,SNR,Nt,lMC);
FEs = FEs + 1;
all_cost(FEs) = SalpFitness(1,i);
if SalpFitness(1,i)<FoodFitness
FoodPosition=SalpPositions(i,:);
FoodFitness=SalpFitness(1,i);
end
cg_curve(runs,FEs) = FoodFitness;
end
l = l + 1;
end
best(runs) = FoodFitness;
pos(runs,:) = FoodPosition;
if find(all_cost<=accep_level)
fes(runs) = min(find(all_cost<=accep_level));
else
fes(runs) = 0;
end
disp(['This is run number ' num2str(runs)]);
FEs = 0;
runs = runs+1;
end % end runs
% bbest = min(best);
mbest = mean(best);
% wbest = max(best);
stdbest = std(best);
sem = stdbest/sqrt(RUNS);
if fes==0
mFEs = -1;
else
indx = find(fes==0);
fes(indx) = [];
mFEs = mean(fes);
end
SR = length(find(fes~=0))/RUNS*100;
if RUNS >1
cg_curve = mean(cg_curve);
end
end % end WSSA
%% This function initialize the first population of search agents
function Positions=initialization(SearchAgents_no,dim,ub,lb)
Boundary_no= size(ub,1); % numnber of boundaries
% If the boundaries of all variables are equal and user enter a signle
% number for both ub and lb
if Boundary_no==1
Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;
end
% If each variable has a different lb and ub
if Boundary_no>1
for i=1:dim
ub_i=ub(i);
lb_i=lb(i);
Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;
end
end
end