AI System for Primer Design
Train encder and decoder.
train.py [-h] [-k K_FOLDS]
[-e NUM_EPOCHS]
[-b BATCH_SIZE]
[-l LEARNING_RATE]
[--embedding_dim EMBEDDING_DIM]
[--hidden_dim HIDDEN_DIM]
[--plot_every PLOT_EVERY]
[--data_path DATA_PATH]
[--word_dict WORD_DICT]
[--debug DEBUG
Regress CT values.
regress.py [-h] [-k K_FOLDS]
[-e NUM_EPOCHS]
[-b BATCH_SIZE]
[-l LEARNING_RATE]
[--embedding_dim EMBEDDING_DIM]
[--hidden_dim HIDDEN_DIM]
[--plot_every PLOT_EVERY]
[--data_path DATA_PATH]
[--word_dict WORD_DICT]
[--debug DEBUG]
Inference CT values.
inference.py [-h] [-k K_FOLDS]
[-b BATCH_SIZE]
[--embedding_dim EMBEDDING_DIM]
[--hidden_dim HIDDEN_DIM]
[--data_path DATA_PATH]
[--word_dict WORD_DICT]
[--debug DEBUG]
Two-step classifier-regressor
Generate binary 'label' for data with NaN
Train classifier
python train_cnn_multi.py \
--data_path='./data/train_df_with_label.csv' \
--loss_function='bce_loss' \
-e 1000 \
--target_name='label' \
--patience 10
Inference with classifier (you may use '--model_path') -> produce 'train/test_df_wtih_label_no_nan.csv'
python inference_cnn_classifier.py \
--data_path='./data/train_df_with_label.csv' \
--target_name='label'
python inference_cnn_classifier.py \
--data_path='./data/test_df_with_label.csv' \
--target_name='label'
Train regressor without NaN (predicted) data
python train_cnn_multi.py --data_path='./data/train_df_with_label_no_nan.csv' \
-e 1000 \
--patience 20
Inference with regressor on train set for qualitative analysis (you may use '--model_path')
python inference_cnn_multi.py --data_path='./data/train_df_with_label_no_nan.csv'
Inference with regressor on test set for predicting ct value (you may use '--model_path')
python inference_cnn_multi.py --data_path='./data/test_df_with_label_no_nan.csv'