-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregress.py
208 lines (165 loc) · 8.02 KB
/
regress.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
import torch.nn as nn
from torch import optim
import numpy as np
import pandas as pd
import pickle
from sklearn.model_selection import KFold
from src.model import *
from src.data import *
from src.plot_utils import show_plot
import argparse
import datetime
from os import makedirs, listdir
from os.path import isdir, join
parser = argparse.ArgumentParser(description='Parser for regression.')
parser.add_argument('-k', '--k_folds', type=int, default=5,
help='number of folds for cross validation (default: 5)')
parser.add_argument('-e', '--num_epochs', type=int, default=250,
help='number of epochs (default: 1000)')
parser.add_argument('-b', '--batch_size', type=int, default=10,
help='size of batch (default: 10)')
parser.add_argument('-l', '--learning_rate', type=float, default=1e-5,
help='learning rate (default: 1e-4)')
parser.add_argument('-d', '--dropout', type=float, default=0.3,
help='regression dropout rate (default: 0.3)')
parser.add_argument('--embedding_dim', type=int, default=24,
help='embedding dimension (default: 24)')
parser.add_argument('--hidden_dim', type=int, default=64,
help='hidden dimension (default: 64)')
parser.add_argument('--plot_every', type=int, default=50,
help='number of epochs for plotting (default: 50)')
parser.add_argument('--data_path', default='./data/train_df45.csv',
help='path for train dataframe (default: ./data/train_df.csv)')
parser.add_argument('--model_path',
help='path for trained encoder (default: latest model)')
parser.add_argument('--word_dict', default='./data/word_dict.pkl',
help='path for word dict (default: ./data/word_dict.pkl)')
parser.add_argument('--debug', type=bool, default=False,
help='debug mode (default: False)')
args = parser.parse_args()
if __name__ == '__main__':
gpu = 0
device = torch.device(f"cuda:{gpu}" if torch.cuda.is_available() else "cpu")
k_folds = args.k_folds
num_epochs = args.num_epochs
batch_size = args.batch_size
learning_rate = args.learning_rate
plot_every = args.plot_every
emb_dim = args.embedding_dim
hidn_dim = args.hidden_dim
# File names
result_img_name = 'regress'
load_model_path = args.model_path
# Debug mode
# if args.debug:
# result_img_name += '_debug'
# Load recent model
if load_model_path is None:
model_dirs = [d for d in listdir('./model/AE') if isdir(join('./model/AE', d))]
model_dirs.sort()
cur_date = model_dirs[-1]
load_model_path = f'./model/AE/{cur_date}/'
save_model_path = f'./model/reg/{cur_date}/'
save_result_path = f'./result/reg/{cur_date}/'
else:
save_model_path = load_model_path.replace('AE', 'reg')
save_result_path = save_model_path.replace('model', 'result')
print(f'Load encoder model at {load_model_path}')
#loss_function = nn.L1Loss()
loss_function = nn.MSELoss()
results = {}
torch.manual_seed(42)
dataset_train = pd.read_csv(args.data_path).to_numpy()
with open(args.word_dict,'rb') as f:
word2index_dict = pickle.load(f)
dataset = Dataset_Reg(dataset_train, word2index_dict)
kfold = KFold(n_splits=k_folds, shuffle=True)
# Make directory for saved model
try:
makedirs(save_model_path, exist_ok=True)
makedirs(save_result_path, exist_ok=True)
except:
save_model_path = './model/reg/'
save_result_path = './result/reg/'
print('----------------------------------')
for fold, (train_index, test_index) in enumerate(kfold.split(dataset)):
print(f'Fold {fold}')
print('----------------------------------')
train_subsampler = torch.utils.data.SubsetRandomSampler(train_index)
test_subsampler = torch.utils.data.SubsetRandomSampler(test_index)
trainloader = get_loader_reg(dataset, train_subsampler, batch_size)
testloader = get_loader_reg(dataset, test_subsampler, batch_size)
encoder = Encoder(7, emb_dim, hidn_dim, device).to(device)
path = join(load_model_path, f'encoder_fold{fold}.pth')
checkpoint = torch.load(path)
encoder.load_state_dict(checkpoint)
model = Regressor(hidn_dim, hidn_dim, device, args.dropout).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# parameters for printing
loss_plot_list = []
loss_plot = 0.0
for epoch in range(1, num_epochs + 1):
# print(f'Epoch {epoch+1}')
loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, _, targets = data
enc_hidn = torch.zeros(1, inputs.shape[0], hidn_dim, device=device)
enc_cell = torch.zeros(1, inputs.shape[0], hidn_dim, device=device)
outputs, _, _ = encoder(inputs, enc_hidn, enc_cell)
output = model(outputs)
#output_dim = output.size(-1)
#outputs = outputs[:, 1:].contiguous().view(-1, output_dim)
#targets = targets[:, 1:].contiguous().view(-1).to(device)
losses = loss_function(output, targets.to(device))
losses.backward()
optimizer.step()
loss += losses.item()
### Print 추가
loss_plot += losses.item()
# if i % 5 == 4:
# print('Loss after mini-batch %5d: %.3f'%(i+1, loss/10))
# loss = 0.0
#print('loss:', loss)
if epoch % plot_every == 0:
print('Epoch %d / %d (%d%%) Loss: %.4f' % (epoch, num_epochs, epoch / num_epochs * 100, loss_plot / (plot_every*(i+1))))
loss_plot_list.append(loss_plot / (plot_every*len(trainloader)))
loss_plot = 0.0
# 결과 프린트
# print('output')
# print(output)
# print('targets')
# print(targets)
show_plot(loss_plot_list, plot_every, fold, save_path=save_result_path, file_name=result_img_name)
print('Training has finished. Saving trained model.')
print('Starting testing')
# Save model
save_path = join(save_model_path, f'reg_fold{fold}.pth')
torch.save(model.state_dict(), save_path)
val_loss = 0.0
with torch.no_grad():
for i, data in enumerate(testloader, 0):
inputs, _, targets = data
enc_hidn = torch.zeros(1, inputs.shape[0], 64, device=device)
enc_cell = torch.zeros(1, inputs.shape[0], 64, device=device)
outputs, _, _= encoder(inputs,enc_hidn,enc_cell)
output = model(outputs)
#output_dim = outputs.size(-1)
#outputs = outputs[:, 1:].contiguous().view(-1, output_dim)
#targets = targets[:, 1:].contiguous().view(-1).to(device)
losses = loss_function(output, targets.to(device))
val_loss += losses.item()
print('val_loss of fold: %.4f' % (val_loss/len(testloader)))
print('-----------------------------------')
results[fold] = val_loss/len(testloader)
#print('output')
#print(output)
#print('targets')
#print(targets)
print(f'K-Fold CV Results of {k_folds} Folds')
print('-----------------------------------')
sum = 0.0
for key, value in results.items():
print('Fold %d: %.4f' % (key, value))
sum += value
print('Average: %.4f' % (sum/len(results.items())))