-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cnn_multi.py
610 lines (546 loc) · 29.9 KB
/
train_cnn_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
from __future__ import unicode_literals, print_function, division
import random
import time
import math
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import torch
import torch.nn as nn
from torch import optim
import numpy as np
import pandas as pd
import pickle
from sklearn.model_selection import KFold
from src.model_cnn import *
from src.data_multi_input import *
from src.plot_utils import show_plot
from src.pointwise_rank import *
from src.cox_loss import *
import argparse
import datetime
from os import makedirs
from src.callbacks import EarlyStopping
# check output
import scipy
# import sklearn
# import pdb
parser = argparse.ArgumentParser(description='Parser for training.')
parser.add_argument('-k', '--k_folds', type=int, default=5,
help='number of folds for cross validation (default: 5)')
parser.add_argument('-e', '--num_epochs', type=int, default=50,
help='number of epochs (default: 500)')
parser.add_argument('-b', '--batch_size', type=int, default=4,
help='size of batch (default: 10)')
parser.add_argument('-l', '--learning_rate', type=float, default=5e-6,
help='learning rate (default: 5e-5)')
# parser.add_argument('-t', '--teacher_forcing_rate', type=float, default=0.5,
# help='teacher forcing rate (default: 0.5)')
parser.add_argument('-d', '--dropout', type=float, default=0.3,
help='encoder dropout rate (default: 0.5)')
# parser.add_argument('--embedding_dim', type=int, default=24,
# help='embedding dimension (default: 24)')
parser.add_argument('--species', default=True,
help='add species feature (default: True)')
parser.add_argument('--hidden_dim', type=int, default=256,
help='hidden dimension (default: 64)')
parser.add_argument('--plot_every', type=int, default=1,
help='number of epochs for plotting (default: 10)')
parser.add_argument('--print_every', type=int, default=1,
help='number of epochs for printing losses for plot (default: 1)')
parser.add_argument('--data_path', default='./data/210916_train_normalized.csv',
help='path for train dataframe (default: ./data/train_df.csv')
parser.add_argument('--key', default='R primer',
help='sequence type for prediction (default: R primer)')
parser.add_argument('--word_dict', default='./data/word_dict.pkl',
help='path for word dict (default: ./data/word_dict.pkl)')
parser.add_argument('--kernel_size', type=int, default=3,
help='conv kernel size (default: 3)')
# parser.add_argument('--debug', type=bool, default=False,
# help='debug mode (default: False)')
parser.add_argument('--gpu', type=int, default=1,
help='gpu assigned (default: 0)')
parser.add_argument('--patience', type=int, default=20,
help='gpu assigned (default: 20)')
parser.add_argument('--target_name', type=str, default='ct',
help='target name to train model (default: ct)')
parser.add_argument('--loss_function', type=str, default='rank_loss_multi',
help='loss function to train model (default: mse_loss)')
args = parser.parse_args()
cur_date = datetime.datetime.now().strftime('%y%m%d-%H%M%S')
if __name__ == '__main__':
device = torch.device(f"cuda:{args.gpu}" if torch.cuda.is_available() else "cpu")
k_folds = args.k_folds
num_epochs = args.num_epochs
batch_size = args.batch_size
learning_rate = args.learning_rate
# plot_every = args.plot_every
# emb_dim = args.embedding_dim
hidn_dim = args.hidden_dim
key = args.key
spec = args.species
max_seq_len = 40
result_img_name = 'train'
# save_result_path = f'./model/cnn/{cur_date}/'
save_model_path = f'./model/cnn/e{num_epochs}-b{batch_size}-lr{learning_rate}-h{hidn_dim}-f{k_folds}/'
# save_result_path = f'./result/cnn/{cur_date}/'
save_result_path = f'./result/cnn/e{num_epochs}-b{batch_size}-lr{learning_rate}-h{hidn_dim}-f{k_folds}/'
# Experiment results (loss)
train_results = {}
val_results = {}
train_results_reg = {}
val_results_reg = {}
train_results_rank = {}
val_results_rank = {}
torch.manual_seed(42)
# Load datasets
dataset_train = pd.read_csv(args.data_path) #.to_numpy()
# with open(args.word_dict,'rb') as f:
# word2index_dict = pickle.load(f)
# word2index_dict = {'A': 0, 'T': 1, 'G': 2, 'C': 3, 'R':4, 'Y':5, 'M':6, 'K':7}
word2index_dict = {'A': 0, 'T': 1, 'G': 2, 'C': 3}
vocab_size = len(word2index_dict)
dataset = Dataset_FRP(dataset_train, key)
kfold = KFold(n_splits=k_folds, shuffle=True)
# Make directory for saved model
try:
makedirs(save_model_path, exist_ok=True)
makedirs(save_result_path, exist_ok=True)
except:
print("Error while making directories")
raise
print('Saved Model Path: %s' % save_model_path)
print('----------------------------------')
for fold, (train_index, dev_index) in enumerate(kfold.split(dataset)):
print(f'Fold {fold}')
print('----------------------------------')
save_path = save_model_path + f'/model_fold{fold}.pth'
# parameters for printing
train_loss_plot_list = []
train_loss_plot = 0.0
valid_loss_plot_list = []
valid_loss_plot = 0.0
# avg losses per epoch
avg_train_losses = []
avg_train_losses_reg = []
avg_train_losses_rank = []
avg_val_losses = []
# correlation
corr_plot_list = []
# early stop
early_stop_pat = args.patience
early_stop_cnt = 0
best_train_loss = np.inf
best_valid_loss = np.inf
# data
train_subsampler = torch.utils.data.SubsetRandomSampler(train_index)
dev_subsampler = torch.utils.data.SubsetRandomSampler(dev_index)
trainloader = get_loader_CNN(dataset, train_subsampler, batch_size, key, word2index_dict)
devloader = get_loader_CNN(dataset, dev_subsampler, batch_size, key, word2index_dict)
# model
model = MultiInputCNN(max_seq_len, vocab_size, hidn_dim, device, args.kernel_size, args.dropout).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
if args.loss_function == 'bce_loss':
loss_function = nn.BCELoss()
activation = nn.Sigmoid()
elif args.loss_function == 'mse_loss':
loss_function = nn.MSELoss()
elif args.loss_function == 'multi':
loss_function = nn.BCELoss()
loss_function_reg = nn.MSELoss()
activation = nn.Sigmoid()
elif args.loss_function == 'rank_loss':
loss_function = RankLoss()
activation = nn.Sigmoid()
elif args.loss_function == 'rank_loss_multi':
loss_function = nn.BCELoss()
loss_function_reg = RankLoss()
activation = nn.Sigmoid()
elif args.loss_function == 'marginrank_loss':
loss_function = nn.MarginRankingLoss()
elif args.loss_function == 'marginrank_multi':
loss_function = nn.BCELoss()
loss_function_reg = nn.MarginRankingLoss()
activation = nn.Sigmoid()
#loss_function_reg = nn.MSELoss()
elif args.loss_function == 'all':
loss_function = nn.BCELoss()
loss_function_rank = nn.MarginRankingLoss()
loss_function_reg = nn.MSELoss()
activation = nn.Sigmoid()
elif args.loss_function == 'cox_loss':
loss_function = PartialNLL()
else:
print('Check Loss')
for epoch in range(1, num_epochs+1):
# losses per epoch while training/evaluating
train_loss = 0.0
valid_loss = 0.0
train_losses = []
valid_losses = []
train_loss_reg = 0.0
valid_loss_reg = 0.0
train_losses_reg = []
valid_losses_reg = []
train_loss_rank = 0.0
valid_loss_rank = 0.0
train_losses_rank = []
valid_losses_rank = []
# correlation
corr_list = []
# train
model.train()
# model.return_hidn_state = True if args.loss_function=='cox_loss' else False
for i, data in enumerate(trainloader, 0):
inputs, targets_cla, targets_reg, targets_rank, species = data
if spec == True:
outputs = model(inputs, species)
else:
outputs = model(inputs)
#print(outputs)
# if args.loss_function != 'cox_loss':
# # cox output : must be in not reduce dim (before the last dense layer)
# pdb.set_trace()
outputs = outputs.view(-1).to(device)
targets_cla = targets_cla.type(torch.FloatTensor).view(-1).to(device)
targets_reg = targets_reg.type(torch.FloatTensor).view(-1).to(device)
targets_rank = targets_rank.type(torch.FloatTensor).view(-1).to(device)
# print(outputs.size())
# print(outputs)
# idx = [i for i in range(len(targets_cla)) if targets_cla[i] == 1]
idx = [i for i in range(len(targets_cla)) if targets_cla[i] == 0]
if args.loss_function == 'bce_loss':
losses = loss_function(activation(outputs), targets_cla)
elif args.loss_function == 'mse_loss':
if len(idx) == 0:
losses = torch.zeros(1, requires_grad=True).to(device)
else:
losses = loss_function(outputs[idx], targets_reg[idx])
elif args.loss_function == 'multi':
losses = loss_function(activation(outputs), targets_cla)
if len(idx) == 0:
losses_reg = torch.zeros(1).to(device)
else:
losses_reg = loss_function_reg(outputs[idx], targets_reg[idx])
elif args.loss_function == 'rank_loss':
losses = loss_function(activation(outputs), targets_rank, len(dataset))
elif args.loss_function == 'rank_loss_multi':
losses = loss_function(activation(outputs), targets_cla)
losses_reg = loss_function_reg(activation(outputs), targets_rank, len(dataset))
elif args.loss_function == 'marginrank_loss':
if len(idx) >= 2:
a, b, c = MarginRank(outputs[idx],targets_reg[idx])
losses = loss_function(a.to(device), b.to(device), c.to(device))
elif args.loss_function == 'marginrank_multi':
losses = loss_function(activation(outputs), targets_cla)
if len(idx) >= 2:
a, b, c = MarginRank(outputs[idx],targets_reg[idx])
losses_reg = loss_function_reg(a.to(device), b.to(device), c.to(device))
else:
losses_reg = torch.zeros(1, requires_grad=True).to(device)
elif args.loss_function == 'all':
losses = loss_function(activation(outputs), targets_cla)
if len(idx) >= 2:
a, b, c = MarginRank(outputs[idx],targets_reg[idx])
losses_rank = loss_function_rank(a.to(device), b.to(device), c.to(device))
else:
losses_rank = torch.zeros(1, requires_grad=True).to(device)
if len(idx) == 0:
losses_reg = torch.zeros(1, requires_grad=True).to(device)
else:
losses_reg = loss_function_reg(outputs[idx], targets_reg[idx])
elif args.loss_function == 'cox_loss':
rank = make_cox_rank(targets_reg)
losses = loss_function(outputs.to(device), rank.to(device), targets_cla.to(device))
else:
print('Check Loss')
if 'multi' in args.loss_function:
losses_tot = 100*losses+losses_reg
losses_tot.backward(retain_graph=True)
elif 'all' in args.loss_function:
losses_tot = losses+losses_reg+losses_rank
losses_tot.backward(retain_graph=True)
else:
losses = losses
losses.backward(retain_graph=True)
#pdb.set_trace()
optimizer.step()
train_loss += losses.item()
train_losses.append(losses.item())
if 'multi' in args.loss_function:
train_loss_reg += losses_reg.item()
train_losses_reg.append(losses_reg.item())
if 'all' in args.loss_function:
train_loss_reg += losses_reg.item()
train_losses_reg.append(losses_reg.item())
train_loss_rank += losses_rank.item()
train_losses_rank.append(losses_rank.item())
if len(outputs[idx]) >= 3:
cor, p = scipy.stats.pearsonr(outputs[idx].cpu().detach().numpy(), targets_reg[idx].cpu().detach().numpy())
corr_list.append(cor)
# evaluate
model.eval()
for i, data in enumerate(devloader, 0):
inputs, targets_cla, targets_reg, targets_rank, species = data
if spec == True:
outputs = model(inputs, species)
else:
outputs = model(inputs)
outputs = outputs.view(-1).to(device)
targets_cla = targets_cla.type(torch.FloatTensor).view(-1).to(device)
targets_reg = targets_reg.type(torch.FloatTensor).view(-1).to(device)
targets_rank = targets_rank.type(torch.FloatTensor).view(-1).to(device)
idx = [i for i in range(len(targets_cla)) if targets_cla[i] == 1]
if args.loss_function == 'bce_loss':
losses = loss_function(activation(outputs), targets_cla)
elif args.loss_function == 'mse_loss':
if len(idx) == 0:
losses = torch.zeros(1).to(device)
else:
losses = loss_function(outputs[idx], targets_reg[idx])
elif args.loss_function == 'multi':
losses = loss_function(activation(outputs), targets_cla)
if len(idx) == 0:
losses_reg = torch.zeros(1).to(device)
else:
losses_reg = loss_function_reg(outputs[idx], targets_reg[idx])
elif args.loss_function == 'rank_loss':
losses = loss_function(activation(outputs), targets_rank)
elif args.loss_function == 'rank_loss_multi':
losses = loss_function(activation(outputs), targets_cla)
losses_reg = loss_function_reg(activation(outputs), targets_rank)
elif args.loss_function == 'marginrank_loss':
if len(idx) >= 2:
a, b, c = MarginRank(outputs[idx],targets_reg[idx])
losses = loss_function(a.to(device), b.to(device), c.to(device))
elif args.loss_function == 'marginrank_multi':
losses = loss_function(activation(outputs), targets_cla)
if len(idx) >= 2:
a, b, c = MarginRank(outputs[idx],targets_reg[idx])
losses_reg = loss_function_reg(a.to(device), b.to(device), c.to(device))
else:
losses_reg = torch.zeros(1).to(device)
elif args.loss_function == 'all':
losses = loss_function(activation(outputs), targets_cla)
if len(idx) >= 2:
a, b, c = MarginRank(outputs[idx],targets_reg[idx])
losses_rank = loss_function_rank(a.to(device), b.to(device), c.to(device))
if len(idx) == 0:
losses_reg = torch.zeros(1).to(device)
else:
losses_reg = loss_function_reg(outputs[idx], targets_reg[idx])
elif args.loss_function == 'cox_loss':
rank = make_cox_rank(targets_reg)
losses = loss_function(outputs.to(device), rank.to(device), targets_cla.to(device))
else:
print('Check Loss')
valid_loss += losses.item()
valid_losses.append(losses.item())
if 'multi' in args.loss_function:
valid_loss_reg += losses_reg.item()
valid_losses_reg.append(losses_reg.item())
if 'all' in args.loss_function:
valid_loss_reg += losses_reg.item()
valid_losses_reg.append(losses_reg.item())
valid_loss_rank += losses_reg.item()
valid_losses_rank.append(losses_reg.item())
# avg(loss) per epoch
avg_train_loss = np.average(train_losses)
avg_train_losses.append(avg_train_loss)
avg_val_loss = np.average(valid_losses)
if 'multi' in args.loss_function:
avg_train_loss_reg = np.average(train_losses_reg)
avg_train_losses_reg.append(avg_train_loss_reg)
avg_val_loss_reg = np.average(valid_losses_reg)
if 'all' in args.loss_function:
avg_train_loss_reg = np.average(train_losses_reg)
avg_train_losses_reg.append(avg_train_loss_reg)
avg_val_loss_reg = np.average(valid_losses_reg)
avg_train_loss_rank = np.average(train_losses_rank)
avg_train_losses_rank.append(avg_train_loss_rank)
avg_val_loss_rank = np.average(valid_losses_rank)
# early stop
if len(avg_val_losses) != 0 and avg_val_loss >= avg_val_losses[-1]:
early_stop_cnt += 1
else:
early_stop_cnt = 0
best_train_loss = avg_train_loss
best_valid_loss = avg_val_loss
if 'multi' in args.loss_function:
best_train_loss_reg = avg_train_loss_reg
best_valid_loss_reg = avg_val_loss_reg
if 'all' in args.loss_function:
best_train_loss_reg = avg_train_loss_reg
best_valid_loss_reg = avg_val_loss_reg
best_train_loss_rank = avg_train_loss_rank
best_valid_loss_rank = avg_val_loss_rank
torch.save(model.state_dict(), save_path)
avg_val_losses.append(avg_val_loss)
if 'multi' in args.loss_function:
avg_val_losses.append(avg_val_loss+avg_val_loss_reg)
if 'all' in args.loss_function:
avg_val_losses.append(avg_val_loss+avg_val_loss_reg+avg_val_loss_rank)
## add
train_loss_plot += avg_train_loss
valid_loss_plot += avg_val_loss
if 'multi' in args.loss_function:
train_loss_plot += avg_train_loss_reg
valid_loss_plot += avg_val_loss_reg
if 'all' in args.loss_function:
train_loss_plot += avg_train_loss_reg
valid_loss_plot += avg_val_loss_reg
train_loss_plot += avg_train_loss_rank
valid_loss_plot += avg_val_loss_rank
if early_stop_cnt >= early_stop_pat:
break
avg_corr = np.average(corr_list)
corr_plot_list.append(avg_corr)
#import pdb; pdb.set_trace()
if epoch % args.print_every == 0:
if 'multi' in args.loss_function:
print('Epoch %d / %d (%d%%) train loss cla: %.4f, train loss reg: %.4f, valid loss cla: %.4f, valid loss reg: %.4f, correlation: %.4f' \
% (epoch, num_epochs, epoch / num_epochs * 100, avg_train_loss, avg_train_loss_reg, avg_val_loss, avg_val_loss_reg, avg_corr))
elif 'all' in args.loss_function:
print('Epoch %d / %d (%d%%) train cla: %.4f, train rank: %.4f, train reg: %.4f, valid cla: %.4f, valid rank: %.4f, valid reg: %.4f, correlation: %.4f' \
% (epoch, num_epochs, epoch / num_epochs * 100, avg_train_loss, avg_train_loss_rank, avg_train_loss_reg, avg_val_loss, avg_val_loss_rank, avg_val_loss_reg, avg_corr))
else:
print('Epoch %d / %d (%d%%) train loss: %.4f, valid loss: %.4f, correlation: %.4f' \
% (epoch, num_epochs, epoch / num_epochs * 100, avg_train_loss, avg_val_loss, avg_corr))
# Plot
if epoch % args.plot_every == 0:
avg_train_loss_plot = train_loss_plot / (args.plot_every) #*(i+1))
avg_valid_loss_plot = valid_loss_plot / (args.plot_every) #*(i+1))
train_loss_plot_list.append(avg_train_loss_plot)
train_loss_plot = 0.0
valid_loss_plot_list.append(avg_valid_loss_plot)
valid_loss_plot = 0.0
# train_results[fold] = train_loss/(len(trainloader))
train_results[fold] = best_train_loss
val_results[fold] = best_valid_loss
if 'multi' in args.loss_function:
train_results_reg[fold] = best_train_loss_reg
val_results_reg[fold] = best_valid_loss_reg
if 'all' in args.loss_function:
train_results_reg[fold] = best_train_loss_reg
val_results_reg[fold] = best_valid_loss_reg
train_results_rank[fold] = best_train_loss_rank
val_results_rank[fold] = best_valid_loss_rank
show_plot(train_loss_plot_list, args.plot_every, fold, \
eval_points=valid_loss_plot_list, save_path=save_result_path, file_name=result_img_name)
print('-----------------------------------')
print(f'Fold {fold} Training Loss: {train_results[fold]}')
print('Average Training Loss: %.4f' % (sum(train_results.values())/len(train_results.items())))
# Save model
# save_path = save_model_path + f'/model_fold{fold}.pth'
# torch.save(model.state_dict(), save_path)
checkpoint_cnn = torch.load(save_path)
model.load_state_dict(checkpoint_cnn)
print('-------- Starting Evaluation --------')
val_loss = 0.0
val_loss_reg = 0.0
val_loss_rank = 0.0
model.eval()
with torch.no_grad():
for i, data in enumerate(devloader, 0):
inputs, targets_cla, targets_reg, targets_rank, species = data
if spec == True:
outputs = model(inputs, species)
else:
outputs = model(inputs)
outputs = outputs.view(-1).to(device)
targets_cla = targets_cla.type(torch.FloatTensor).view(-1).to(device)
targets_reg = targets_reg.type(torch.FloatTensor).view(-1).to(device)
targets_rank = targets_rank.type(torch.FloatTensor).view(-1).to(device)
idx = [i for i in range(len(targets_cla)) if targets_cla[i] == 1]
if args.loss_function == 'bce_loss':
losses = loss_function(activation(outputs), targets_cla)
elif args.loss_function == 'mse_loss':
if len(idx) == 0:
losses = torch.zeros(1).to(device)
else:
losses = loss_function(outputs[idx], targets_reg[idx])
elif args.loss_function == 'multi':
losses = loss_function(activation(outputs), targets_cla)
if len(idx) == 0:
losses_reg = torch.zeros(1).to(device)
else:
losses_reg = loss_function_reg(outputs[idx], targets_reg[idx])
elif args.loss_function == 'rank_loss':
losses = loss_function(activation(outputs), targets_rank)
elif args.loss_function == 'rank_loss_multi':
losses = loss_function(activation(outputs), targets_cla)
losses_reg = loss_function_reg(activation(outputs), targets_rank)
elif args.loss_function == 'marginrank_loss':
if len(idx) >= 2:
a, b, c = MarginRank(outputs[idx],targets_reg[idx])
losses = loss_function(a.to(device), b.to(device), c.to(device))
elif args.loss_function == 'marginrank_multi':
losses = loss_function(activation(outputs), targets_cla)
if len(idx) >= 2:
a, b, c = MarginRank(outputs[idx],targets_reg[idx])
losses_reg = loss_function_reg(a.to(device), b.to(device), c.to(device))
else:
losses_reg = torch.zeros(1).to(device)
elif args.loss_function == 'all':
losses = loss_function(activation(outputs), targets_cla)
if len(idx) >= 2:
a, b, c = MarginRank(outputs[idx],targets_reg[idx])
losses_rank = loss_function_rank(a.to(device), b.to(device), c.to(device))
else:
losses_rank = torch.zeros(1).to(device)
if len(idx) == 0:
losses_reg = torch.zeros(1).to(device)
else:
losses_reg = loss_function_reg(outputs[idx], targets_reg[idx])
elif args.loss_function == 'cox_loss':
rank = make_cox_rank(targets_reg)
losses = loss_function(outputs.to(device), rank.to(device), targets_cla.to(device))
else:
print('Check Loss')
val_loss += losses.item()
if 'multi' in args.loss_function:
val_loss_reg += losses_reg.item()
if 'all' in args.loss_function:
val_loss_reg += losses_reg.item()
val_loss_rank += losses_rank.item()
print('val_loss of fold: %.4f' % (val_loss/len(devloader)))
print('-----------------------------------')
val_results[fold] = val_loss/len(devloader)
if 'multi' in args.loss_function:
print('val_loss cla of fold: %.4f' % (val_loss/len(devloader)))
print('val_loss reg of fold: %.4f' % (val_loss_reg/len(devloader)))
print('-----------------------------------')
val_results[fold] = val_loss/len(devloader)
val_results_reg[fold] = val_loss_reg/len(devloader)
if 'all' in args.loss_function:
print('val_loss cla of fold: %.4f' % (val_loss/len(devloader)))
print('val_loss reg of fold: %.4f' % (val_loss_reg/len(devloader)))
print('val_loss rank of fold: %.4f' % (val_loss_rank/len(devloader)))
print('-----------------------------------')
val_results[fold] = val_loss/len(devloader)
val_results_reg[fold] = val_loss_reg/len(devloader)
val_results_rank[fold] = val_loss_rank/len(devloader)
print(f'K-Fold CV Results of {k_folds} Folds')
print('-----------------------------------')
if 'multi' in args.loss_function:
for f in range(fold+1):
print('[Fold %d] train loss cla: %.4f, train loss reg: %.4f, valid loss cla: %.4f, valid loss reg: %.4f' %\
(f, train_results[f], train_results_reg[f], val_results[f], val_results_reg[f]))
print('%d folds average train loss cla: %.4f, train loss reg: %.4f, valid loss cla: %.4f, valid loss reg: %.4f' \
% ((fold+1), sum(train_results.values())/len(train_results.items()), sum(train_results_reg.values())/len(train_results_reg.items()),
sum(val_results.values())/len(val_results.items()), sum(val_results_reg.values())/len(val_results_reg.items())))
elif 'all' in args.loss_function:
for f in range(fold+1):
print('[Fold %d] train cla: %.4f, train rank: %.4f, train reg: %.4f, valid cla: %.4f, valid rank: %.4f, valid reg: %.4f' %\
(f, train_results[f], train_results_rank[f], train_results_reg[f], val_results[f], val_results_rank[f], val_results_reg[f]))
print('%d folds average train cla: %.4f, train rank: %.4f, train reg: %.4f, valid cla: %.4f, valid rank: %.4f, valid reg: %.4f' \
% ((fold+1), sum(train_results.values())/len(train_results.items()), sum(train_results_rank.values())/len(train_results_rank.items()),sum(train_results_reg.values())/len(train_results_reg.items()),
sum(val_results.values())/len(val_results.items()), sum(val_results_rank.values())/len(val_results_rank.items()), sum(val_results_reg.values())/len(val_results_reg.items())))
else:
for f in range(fold+1):
print('[Fold %d] train loss: %.4f, valid loss: %.4f' %\
(f, train_results[f], val_results[f]))
print('%d folds average train loss: %.4f, valid loss: %.4f' \
% ((fold+1), sum(train_results.values())/len(train_results.items()),
sum(val_results.values())/len(val_results.items())))
print('Saved Model Path: %s' % save_model_path)
print('-----------------------------------')