-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprocess_img.py
72 lines (56 loc) · 2.45 KB
/
process_img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import mediapipe as mp
import numpy as np
import pickle
from keras.preprocessing.sequence import pad_sequences # For padding the detected data to remove whitespaces
mp_hands = mp.solutions.hands
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
hands = mp_hands.Hands(
static_image_mode=True,
max_num_hands=1,
min_detection_confidence=0.5,
min_tracking_confidence=0.5
)
model_dict = pickle.load(open("model3.p", "rb")) # Loading the model
model = model_dict["model"]
labels_dict = {0: "A", 1: "B", 2: "C", 3: "D", 4: "E", 5: "F", 6: "G",
7: "H", 8: "I", 9: "J", 10: "K", 11: "L", 12: "M", 13: "N",
14: "O", 15: "P", 16: "Q", 17: "R", 18: "S", 19: "T", 20: "U",
21: "V", 22: "W", 23: "X", 24: "Y", 25: "Z"}
def process(frame, frame_rgb, width, height):
data_aux = []
x_ = []
y_ = []
results = hands.process(frame_rgb)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
# Drawing the landmarks
mp_drawing.draw_landmarks(
frame,
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style()
)
for hand_landmarks in results.multi_hand_landmarks:
for i in range(len(hand_landmarks.landmark)):
x = hand_landmarks.landmark[i].x
y = hand_landmarks.landmark[i].y
x_.append(x)
y_.append(y)
for i in range(len(hand_landmarks.landmark)):
x = hand_landmarks.landmark[i].x
y = hand_landmarks.landmark[i].y
data_aux.append(x - min(x_))
data_aux.append(y - min(y_))
# Padding the landmarks
data_aux = pad_sequences([data_aux], maxlen=42, padding='post', truncating='post', dtype='float32')[0]
x1 = int(min(x_) * width) - 10
y1 = int(min(y_) * height) - 10
x2 = int(max(x_) * width) - 10
y2 = int(max(y_) * height) - 10
# Getting the prediction from the trained model
prediction = model.predict([np.asarray(data_aux)])
character = labels_dict[int(prediction[0])]
return True, character, (x1, y1, x2, y2)
return None, None, None