-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
155 lines (124 loc) · 5.47 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import torch
import torch.nn as nn
import torch.optim as optim
from util import Logger, AverageMeter, save_checkpoint, save_tensor_img, set_seed
import os
import numpy as np
from matplotlib import pyplot as plt
import time
import argparse
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
from scipy.stats import kurtosis, skew
from scipy.stats import entropy
from sklearn.linear_model import LinearRegression
import time
from sklearn.cluster import KMeans
import seaborn as sns
from models import *
from utils import *
from dataset import get_loader
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
parser = argparse.ArgumentParser(description='')
parser.add_argument('--loss',
default='IoU_loss',
type=str,
help="Options: '', ''")
parser.add_argument('--data_split',
default=2,
type=str,
help="Options: '', ''")
parser.add_argument('--lab_im_path',
default= './datasets/COCO9213/img_bilinear_224',
type=str,
help="Options: '', ''")
parser.add_argument('--lab_gt_path',
default='./datasets/COCO9213/gt_bilinear_224',
type=str,
help="Options: '', ''")
parser.add_argument('--bs', '--batch_size', default=1, type=int)
parser.add_argument('--lr',
'--learning_rate',
default=1*1e-4,
type=float,
help='Initial learning rate')
parser.add_argument('--resume',
default=None,
type=str,
help='path to latest checkpoint')
parser.add_argument('--epochs', default=350, type=int)
parser.add_argument('--start_epoch',
default=0,
type=int,
help='manual epoch number (useful on restarts)')
parser.add_argument('--trainset',
default='CoCo',
type=str,
help="Options: 'CoCo'")
parser.add_argument('--size',
default=224,
type=int,
help='input size')
parser.add_argument('--tmp', default='./sup_sam2', help='Temporary folder')
args = parser.parse_args()
def main(args):
device = torch.device("cuda")
model = SCoSPARC()
model = model.to(device)
modelname = './checkpoints/'+ args.checkpoint_name #E.g. of model_checkpoint:'model.pt'
model1 = torch.load(modelname)
print('loaded', modelname)
model.to(device)
model.load_state_dict(model1)
model.eval()
save_root = './predictions/'+args.model_folder+'/'
for testset in ['CoCA','Cosal2015','CoSOD3k']:
print('=============================================')
if testset == 'CoCA':
test_img_path = './datasets/CoCA/image/' # CoCA image folder path
test_gt_path = './datasets/CoCA/groundtruth/' # CoCA ground truth folder path
saved_root = os.path.join(save_root, 'CoCA')
elif testset == 'CoSOD3k':
test_img_path = './datasets/CoSOD3k/image/' # CoSOD3k image folder path
test_gt_path = './datasets/CoSOD3k/groundtruth/' # CoSOD3k ground truth folder path
saved_root = os.path.join(save_root, 'CoSOD3k')
elif testset == 'Cosal2015':
test_img_path = './datasets/Cosal2015/image/' # CoSal2015 image folder path
test_gt_path = './datasets/Cosal2015/groundtruth/' # CoSal2015 ground truth folder path
saved_root = os.path.join(save_root, 'Cosal2015')
else:
print('Unknown test dataset')
print(args.dataset)
test_loader = get_loader(test_img_path, test_gt_path, args.size, 1, istrain=False, shuffle=False, num_workers=8, pin=True)
count = 0
count_l,time_t = 0,0
for batch in test_loader:
inputs = batch[0].to(device).squeeze(0)
gts = batch[1].to(device).squeeze(0)
subpaths = batch[2]
ori_sizes = batch[3]
t0 = time.time()
scaled_preds_m,scaled_preds_nocrf,corr_maps,sa_maps,scaled_preds,preds_nocrf,avg_conf,avg_th,fg_interim = model(inputs,subpaths,'test',0,0,50,testset)
count_l += len(inputs)
count +=1
num = gts.shape[0]
os.makedirs(os.path.join(saved_root, subpaths[0][0].split('/')[0]), exist_ok=True)
for inum in range(num):
subpath = subpaths[inum][0]
ori_size = (ori_sizes[inum][0].item(), ori_sizes[inum][1].item())
orig = cv2.imread('./datasets/'+testset+'/image/'+subpath[:-4]+'.jpg')
res = scaled_preds[inum].detach().cpu().numpy()
res = np.uint8(res*255)
res = cv2.resize(np.uint8(res),(ori_size[1],ori_size[0]))
cv2.imwrite(os.path.join(saved_root, subpath),res)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='')
parser.add_argument('--size',
default=224,
type=int,
help='input size')
parser.add_argument('--model_folder', default='checkpoints', type=str, help='model folder')
parser.add_argument('--checkpoint_name', default='model_combined.pt', type=str, help='Checkpoint name')
args = parser.parse_args()
main(args)