-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
271 lines (214 loc) · 9.41 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import torch
import torch.nn as nn
import torch.optim as optim
from util import Logger, AverageMeter, save_checkpoint, save_tensor_img, set_seed
import os
import numpy as np
from matplotlib import pyplot as plt
import time
import argparse
from tqdm import tqdm
from dataset import get_loader
import warnings
warnings.filterwarnings("ignore")
from PIL import Image
from models import *
from utils import *
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
parser = argparse.ArgumentParser(description='')
parser.add_argument('--loss',
default='IoU_loss',
type=str,
help="Options: '', ''")
parser.add_argument('--data_split',
default=2,
type=str,
help="Options: '', ''")
parser.add_argument('--lab_im_path',
default= './datasets/combo/image/', # combo set is a combination of COCO-9213 and DUTS_Class datasets.
type=str,
help="Options: '', ''")
parser.add_argument('--lab_gt_path',
default= './datasets/combo/groundtruth/',
type=str,
help="Options: '', ''")
parser.add_argument('--val_im_path',
default= './datasets/CoCA/image',
type=str,
help="Options: '', ''")
parser.add_argument('--val_gt_path',
default= './datasets/CoCA/groundtruth',
type=str,
help="Options: '', ''")
parser.add_argument('--bs', '--batch_size', default=1, type=int)
parser.add_argument('--lr',
'--learning_rate',
default=1*1e-4,
type=float,
help='Initial learning rate')
parser.add_argument('--resume',
default=None,
type=str,
help='path to latest checkpoint')
parser.add_argument('--epochs', default=150, type=int)
parser.add_argument('--start_epoch',
default=0,
type=int,
help='manual epoch number (useful on restarts)')
parser.add_argument('--trainset',
default='CoCo',
type=str,
help="Options: 'CoCo'")
parser.add_argument('--size',
default=224,
type=int,
help='input size')
parser.add_argument('--tmp', default='./checkpoints', help='Temporary folder')
args = parser.parse_args()
which_level = args.data_split
# Prepare dataset
if args.trainset == 'CoCo':
train_img_path = args.lab_im_path
train_gt_path = args.lab_gt_path
train_loader = get_loader(train_img_path,
train_gt_path,
args.size,
args.bs,
max_num=24, #20,
istrain=True,
shuffle=True,
num_workers=8, #4,
pin=True)
else:
print('Unkonwn train dataset')
print(args.dataset)
# make dir for tmp
os.makedirs(args.tmp, exist_ok=True)
# Init log file
logger = Logger(os.path.join(args.tmp, "log.txt"))
set_seed(123)
# Init model
device = torch.device("cuda")
model = SCoSPARC()
enc_attn_paramsm = list(map(id, model.encoder_attn.parameters()))
enc_attn_params = filter(lambda p: id(p) in enc_attn_paramsm,model.parameters())
all_params = [{'params': enc_attn_params,'lr': 0.0001}]
optimizer = optim.Adam(params = all_params,lr=args.lr, weight_decay=1e-4, betas=[0.9, 0.99])
# log model and optimizer parts
logger.info("Model details:")
logger.info(model)
logger.info("Optimizer details:")
logger.info(optimizer)
logger.info("Other hyperparameters:")
logger.info(args)
# Setting Loss
exec('from loss import ' + args.loss)
def main():
# Optionally resume from a checkpoint
cut_off_epoch = 1
val_int = 1
if args.resume:
if os.path.isfile(args.resume):
logger.info("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
model.dcfmnet.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger.info("=> loaded checkpoint '{}' (epoch {})".format(
args.resume, checkpoint['epoch']))
else:
logger.info("=> no checkpoint found at '{}'".format(args.resume))
print(args.epochs)
min_val_loss = 0
dict_embeds = {}
for epoch in range(args.start_epoch, args.epochs):
train_loss, val_loss = train(epoch,cut_off_epoch,val_int,dict_embeds) #,val_loss
if (epoch) % val_int == 0:
if val_loss > min_val_loss:
print('Maximum F-measure:',val_loss)
min_val_loss = val_loss
torch.save(model.state_dict(), args.tmp + '/model_combo_base8-' + str(epoch + 1)+'_' +str(min_val_loss)+'.pt')
dcfmnet_dict = model.state_dict()
torch.save(dcfmnet_dict, os.path.join(args.tmp, 'final.pth'))
def train(epoch,cut_off_epoch,val_int,dict_embeds):
loss_sum,sum_wgs = 0.0,0.0
loss_sum_attmap,loss_sum_mask = 0,0
val_loss_sum1 = 0
total_val_loss = 0
cos_dist = torch.nn.CosineSimilarity(dim=0)
for batch_idx, batch in enumerate(train_loader):
model.train()
inputs = batch[0].to(device).squeeze(0)
gts = batch[1].to(device).squeeze(0)
paths = batch[2]
fg_embed, bg_embed, fg_sal = model(inputs, paths, 'train', batch_idx, epoch, cut_off_epoch,'Coco9213')
# Co-occurrence loss
loss1,count = 0,0
for i in range(len(inputs)):
for j in range(i+1,len(inputs)):
dist_p = torch.exp(1-cos_dist(fg_embed[i,:],fg_embed[j,:]))
dist_n = torch.exp(1-(cos_dist(fg_embed[i,:],bg_embed[i,:])+cos_dist(fg_embed[j,:],bg_embed[j,:])))
loss1 += dist_p/(dist_p + dist_n)
count += 1
loss_embed = loss1/count
# Saliency loss
loss_sal = fg_sal
# Weighted average of co-occurrence and saliency losses
loss = loss_embed + 0.3*loss_sal
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_sum = loss_sum + loss.detach().item()
if batch_idx % 20 == 0:
logger.info('Epoch[{0}/{1}] Iter[{2}/{3}] '
'Train Losses - total loss: {4:.3f}, embed loss: {5:.3f} sal loss: {6:.3f}'.format( #sal loss: {6:.3f}
epoch,
args.epochs,
batch_idx,
len(train_loader),
loss,
loss_embed,
0.3*loss_sal,
))
if epoch % val_int == 0 and batch_idx == len(train_loader)-1:
model.eval()
total_val_loss = 0
total_all_count = 0
for testset in ['CoCA','Cosal2015','CoSOD3k']:
with torch.no_grad():
if testset == 'CoCA':
val_img_path = args.val_im_path
val_gt_path = args.val_gt_path
elif testset == 'Cosal2015':
val_img_path = './datasets/Cosal2015/image'
val_gt_path = './datasets/Cosal2015/groundtruth'
else:
val_img_path = './datasets/CoSOD3k/image'
val_gt_path = './datasets/CoSOD3k/groundtruth'
val_loader = get_loader(val_img_path, val_gt_path, args.size, 1, istrain=False, shuffle=False, num_workers=8, pin=True)
val_loss_sum1 = 0
count = 0
total_count = 0
for batch in tqdm(val_loader):
inputs = batch[0].to(device).squeeze(0)
gts = batch[1].to(device).squeeze(0)
paths = batch[2]
preds,_,_,_,_,_,_,_,_ = model(inputs,paths,'test',1,epoch,cut_off_epoch,testset)
loss_fmeasure,list_fmeasures,avg_f_fmeasures = Eval_fmeasure(preds,gts)
if count == 0:
val_loss_sum1 = avg_f_fmeasures
else:
val_loss_sum1 += avg_f_fmeasures
count += 1
total_count += len(preds)
val_loss_sum1 /= total_count
val_loss_sum1 = val_loss_sum1.max().item()
print('Testset:',testset,', Epoch:',epoch,', Validation loss:',val_loss_sum1, ', total_count:',total_count)
total_val_loss += val_loss_sum1
total_all_count += total_count
print('Epoch:',epoch,', Total Validation loss:',total_val_loss/3, ', total_count:',total_all_count)
loss_mean = loss_sum / len(train_loader)
logger.info('CkptIndex={}: TrainLosses = {} \n'.format(epoch, loss_mean))
return loss_sum, total_val_loss/3
if __name__ == '__main__':
main()