-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_prepare.py
107 lines (86 loc) · 3.94 KB
/
data_prepare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#!/usr/bin/env python3
import argparse
import os
import csv
import random
import shutil
import sys
import zipfile
import numpy as np
from preprocessing import get_file_byte_string
def extract_zip(zip_file, extract_path):
try:
with zipfile.ZipFile(zip_file) as zip_ref:
zip_ref.extractall(extract_path)
except zipfile.BadZipfile as e:
print("BAD ZIP: " + zip_file)
try:
os.remove(zip_file)
except OSError as e:
print(f"Failed to remove {zip_file}: {e}")
def create_directories():
directories = ["Training/Benign", "Testing/Benign", "Training/Malicious", "Testing/Malicious"]
for directory in directories:
os.makedirs(directory, exist_ok=True)
def split_files(source, dest_train, dest_test, files, percentage):
num_train = round(len(files) * (percentage / 100))
for file_name in random.sample(files, num_train):
shutil.move(os.path.join(source, file_name), dest_train)
for f in os.listdir(source):
os.rename(os.path.join(source, f), os.path.join(dest_test, f))
def create_row(filetype, file):
global id_counter
file_data = np.zeros(4, dtype=object)
file_data[0] = id_counter
file_data[1] = filetype
file_data[2] = os.path.basename(os.path.normpath(file))
bytecode = get_file_byte_string(file)
truncated_bytecode = bytecode[:MAX_BYTECODE_LENGTH]
file_data[3] = truncated_bytecode
print("Length of file_data:", len(file_data))
id_counter += 1
return file_data
def main(args):
parser = argparse.ArgumentParser(description='Split dataset')
parser.add_argument('-t', '--training-percentage', type=int, required=False, default=50, help='Percentage of data for training')
options = parser.parse_args(args)
if not 5 <= options.training_percentage <= 95:
print("Percentage must be between 5 and 95.")
return
create_directories()
for filename in os.listdir():
if filename == "Benign.zip":
name = os.path.splitext(os.path.basename(filename))[0]
if not os.path.isdir(name):
extract_zip(filename, "Benign")
elif filename == "Malicious.zip":
name = os.path.splitext(os.path.basename(filename))[0]
if not os.path.isdir(name):
extract_zip(filename, "Malicious")
benign_files = os.listdir("Benign")
malicious_files = os.listdir("Malicious")
split_files("Benign", "Training/Benign", "Testing/Benign", benign_files, options.training_percentage)
split_files("Malicious", "Training/Malicious", "Testing/Malicious", malicious_files, options.training_percentage)
if __name__ == "__main__":
main(sys.argv[1:])
MAX_BYTECODE_LENGTH = 1000
header = ['id', 'label', 'name', 'contents']
id_counter = 1
with open('testing.csv', 'w', newline='') as testing_csv:
writer = csv.writer(testing_csv)
writer.writerow(header)
for benign_file in os.listdir(os.path.join('Testing', 'Benign')):
row_data = create_row(0, os.path.join('Testing', 'Benign', benign_file))
writer.writerow(row_data)
for malicious_file in os.listdir(os.path.join('Testing', 'Malicious')):
row_data = create_row(1, os.path.join('Testing', 'Malicious', malicious_file))
writer.writerow(row_data)
with open('training.csv', 'w', newline='') as training_csv:
writer = csv.writer(training_csv)
writer.writerow(header)
for benign_file in os.listdir(os.path.join('Training', 'Benign')):
row_data = create_row(0, os.path.join('Training', 'Benign', benign_file))
writer.writerow(row_data)
for malicious_file in os.listdir(os.path.join('Training', 'Malicious')):
row_data = create_row(1, os.path.join('Training', 'Malicious', malicious_file))
writer.writerow(row_data)