-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathevaluate_indent.py
142 lines (130 loc) · 5.91 KB
/
evaluate_indent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Copyright (c) 2021, Hitachi America Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import json
import os
import click
from pdf_struct.core import transition_labels
from pdf_struct.core.clustering import cluster_positions
from pdf_struct.core.predictor import ListAction
from pdf_struct.core.structure_evaluation import evaluate_structure, \
evaluate_labels
from pdf_struct.core.utils import pairwise
from pdf_struct import loader
@click.command()
@click.option('--metrics', type=click.Path(exists=False), default=None,
help='Dump metrics as a JSON file.')
@click.argument('file-type', type=click.Choice(('txt', 'pdf')))
@click.argument('raw-dir', type=click.Path(exists=True))
@click.argument('anno-dir', type=click.Path(exists=True))
def main(metrics, file_type: str, raw_dir: str, anno_dir: str):
print(f'Loading annotations from {anno_dir}')
annos = transition_labels.load_annos(anno_dir)
print('Loading and extracting features from raw files')
if file_type == 'pdf':
documents = loader.pdf.load_from_directory(raw_dir, annos)
documents_pred = []
for document in documents:
horizontal_thresh = 10 # 10 points = 1em
line_spacing_thresh = 2 # 2 points = 1ex / 2
clusters_l, mappings_l = cluster_positions(
[b.bbox[0] for b in document.text_blocks], horizontal_thresh)
clusters_s, mappings_s = cluster_positions(
[b1.bbox[1] - b2.bbox[1]
for b1, b2 in pairwise(sorted(document.text_blocks, key=lambda b: (
b.page, -b.bbox[1], b.bbox[0])))
if b1.page == b2.page],
line_spacing_thresh
)
line_spacing = max(clusters_s, key=lambda c: len(c))
labels = []
pointers = []
clusters = [clusters_l[mappings_l[document.text_blocks[0].bbox[0]]]]
for i in range(1, len(document.text_blocks)):
c_i = clusters_l[mappings_l[document.text_blocks[i].bbox[0]]]
if clusters[-1] == c_i:
ls = document.text_blocks[i-1].bbox[1] - document.text_blocks[i].bbox[1]
if document.text_blocks[i-1].page == document.text_blocks[i].page and ls in line_spacing:
# normal line spacing
labels.append(ListAction.CONTINUOUS)
else:
labels.append(ListAction.SAME_LEVEL)
pointers.append(None)
elif clusters[-1].mean < c_i.mean:
labels.append(ListAction.DOWN)
pointers.append(None)
elif clusters[-1].mean > c_i.mean:
labels.append(ListAction.UP)
for j in range(i - 1, -1, -1):
if clusters[j] is not None and clusters[j] == c_i:
pointers.append(j)
break
# Disable non-matching cluster to avoid matching to counsins
clusters[j] = None
else:
pointers.append(-1)
clusters.append(c_i)
labels.append(ListAction.UP)
pointers.append(-1)
d = copy.deepcopy(document)
d.labels = labels
d.pointers = pointers
documents_pred.append(d)
else:
documents = loader.text.load_from_directory(raw_dir, annos)
documents_pred = []
for document in documents:
labels = []
pointers = []
indent_history = [document.text_blocks[0].indent]
for i in range(1, len(document.text_blocks)):
indent = document.text_blocks[i].indent
if indent_history[-1] == indent:
if document.text_blocks[i].top_spacing:
labels.append(ListAction.SAME_LEVEL)
else:
labels.append(ListAction.CONTINUOUS)
pointers.append(None)
elif indent_history[-1] < indent:
labels.append(ListAction.DOWN)
pointers.append(None)
elif indent_history[-1] > indent:
labels.append(ListAction.UP)
for j in range(i - 1, -1, -1):
if indent_history[j] is not None and indent_history[j] == indent:
pointers.append(j)
break
# Disable non-matching cluster to avoid matching to counsins
indent_history[j] = None
else:
pointers.append(-1)
indent_history.append(indent)
labels.append(ListAction.UP)
pointers.append(-1)
d = copy.deepcopy(document)
d.labels = labels
d.pointers = pointers
documents_pred.append(d)
if metrics is None:
print(json.dumps(evaluate_structure(documents, documents_pred), indent=2))
print(json.dumps(evaluate_labels(documents, documents_pred), indent=2))
else:
_metrics = {
'structure': evaluate_structure(documents, documents_pred),
'labels': evaluate_labels(documents, documents_pred)
}
with open(metrics, 'w') as fout:
json.dump(_metrics, fout, indent=2)
if __name__ == '__main__':
main()