forked from naiqili/DGPG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtoy_main.py
192 lines (143 loc) · 5.95 KB
/
toy_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from mpl_toolkits.axes_grid1 import make_axes_locatable
import random
import os
import sys
os.environ["CUDA_VISIBLE_DEVICES"] = '0' # using specific GPU
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
tf.logging.set_verbosity(tf.logging.ERROR)
from compatible.likelihoods import MultiClass, Gaussian
from compatible.kernels import RBF, White
from gpflow.models.svgp import SVGP
from gpflow.training import AdamOptimizer, ScipyOptimizer
from scipy.stats import mode
from scipy.cluster.vq import kmeans2
import gpflow
from gpflow.mean_functions import Identity, Linear
from gpflow.mean_functions import Zero
from gpflow import autoflow, params_as_tensors, ParamList
import pandas as pd
import itertools
pd.options.display.max_rows = 999
import gpflow_monitor
from scipy.cluster.vq import kmeans2
from scipy.stats import norm
from scipy.special import logsumexp
from scipy.io import loadmat
from gpflow_monitor import *
print('tf_ver:', tf.__version__, 'gpflow_ver:', gpflow.__version__)
from tensorflow.python.client import device_lib
print('avail devices:\n'+'\n'.join([x.name for x in device_lib.list_local_devices()]))
from jack_utils.common import time_it
import sys
import gpflow.training.monitor as mon
# our impl
from dgp_graph import *
import argparse
parser = argparse.ArgumentParser(description='main.')
parser.add_argument('--fout', type=str)
parser.add_argument('--seed', type=int)
parser.add_argument('--pert_k', type=int)
args = parser.parse_args()
np.random.seed(123456)
def agg_func(adj, batch_x):
# adj(n, n), batch_x(batch, n, feat)
# out: selected(batch, n, n*feat)
a_ = np.expand_dims(adj, axis=-1)
x_ = np.expand_dims(batch_x, axis=1) # 维度插入应该在node维度之前
selected = a_*x_
return selected.reshape(batch_x.shape[0], batch_x.shape[1], -1)
def gen_data(nn, dg=3, trainsize=500, testsize=100, ns=1.0):
gmat = np.eye(nn)
for i in range(nn):
r = np.random.permutation(nn)
gmat[i, r[:dg]] = 1
gmat = np.minimum(1, gmat+gmat.T)
gmat = gmat.astype('int32')
X, Y = np.random.randn(trainsize+testsize, nn), np.random.randn(trainsize+testsize, nn)*ns
# for i in range(nn):
# X[:, i] += np.sin(i)*ns + i
# Y=X+10
for i in range(trainsize+testsize):
for j in range(nn):
connetedx = X[i, gmat[:, j] == 1]
Y[i, j] += np.sum(connetedx)
Xs, Ys = X[-testsize:, :], Y[-testsize:, :]
X, Y = X[:trainsize, :], Y[:trainsize, :]
# normalize Y
mu_y = np.mean(Y, axis=0)
std_y = np.std(Y, axis=0)
Y = (Y-mu_y)/std_y
Ys = (Ys-mu_y)/std_y
return gmat, X, Y, Xs, Ys
nodes = 500
(gmat, trX, trY, Xs, Ys) = gen_data(nodes, dg=3, trainsize=500, testsize=200, ns=1.0)
k_ex = args.pert_k
for r in range(len(gmat)):
lst0 = np.where(gmat[r, :] == 0)[0]
lst1 = random.choices(lst0, k=k_ex)
lst2 = np.where(gmat[r, :] == 1)[0]
lst3 = random.choices(lst0, k=k_ex)
gmat[r, lst1] = 1
gmat[r, lst3] = 0
M=50
Z = np.stack([kmeans2(trX[:,i], M, minit='points')[0] for i in range(nodes)],axis=1) # (M=s2=10, n, d_in=5)
print('inducing points Z: {}'.format(Z.shape))
node_id = 0
adj = gmat.astype('float64')
input_adj = adj # adj / np.identity(adj.shape[0]) / np.ones_like(adj)
with gpflow.defer_build():
adj_dgpg = DGPG(trX[:,:,None], trY[:,:,None], Z[:,:,None], [1], Gaussian(), input_adj,
agg_op_name='concat3d', ARD=False,
is_Z_forward=True, mean_trainable=False, out_mf0=True,
num_samples=1, minibatch_size=None
)
# m_sgp = SVGP(X, Y, kernels, Gaussian(), Z=Z, minibatch_size=minibatch_size, whiten=False)
adj_dgpg.compile()
model1 = adj_dgpg
session = model1.enquire_session()
global_step = mon.create_global_step(session)
print_task = mon.PrintTimingsTask()\
.with_name('print')\
.with_condition(mon.PeriodicIterationCondition(10))\
with mon.LogdirWriter('./exp/toy/tempx') as writer:
tensorboard_task = mon.ModelToTensorBoardTask(writer, model1)\
.with_name('tensorboard')\
.with_condition(mon.PeriodicIterationCondition(100))\
.with_exit_condition(True)
monitor_tasks = [] # [print_task, tensorboard_task]
optimiser = gpflow.train.AdamOptimizer(0.01)
with mon.Monitor(monitor_tasks, session, global_step, print_summary=True) as monitor:
optimiser.minimize(model1, step_callback=monitor, global_step=global_step, maxiter=1000)
kzz1 = model1.layers[0].kern.compute_K_symm(model1.layers[0].feature.Z.value) # ~Kzz
s1 = model1.layers[0].q_sqrt.value[node_id, 0] * model1.layers[0].q_sqrt.value[node_id, 0].T # ~S
Q1 = kzz1[node_id] - s1 # ~Q = ~Kzz - ~S
X_agg1 = agg_func(adj, trX[:,:,None])
Z_agg1 = agg_func(adj, Z[:,:,None])
knxz1 = model1.layers[0].kern.compute_K(X_agg1, Z_agg1)
kxz1_lst = [np.linalg.norm(v) for v in knxz1[0]] # list of ~k
norm_kxz1 = np.mean(kxz1_lst) # \~k\
adj_fc = np.ones_like(adj)
X_fc1 = agg_func(adj_fc, trX[:,:,None])
Z_fc1 = agg_func(adj_fc, Z[:,:,None])
knxz_fc1 = model1.layers[0].kern.compute_K(X_fc1, Z_fc1)
kxz2_lst = [np.linalg.norm(v) for v in knxz_fc1[0]] # list of k
norm_fc_kxz1 = np.mean(kxz2_lst) # \~k\
kzz1fc = model1.layers[0].kern.compute_K_symm(Z_fc1)
Q1fc = kzz1fc[node_id] - s1
ntk0 = np.linalg.norm(knxz1[0, node_id, :]) # \~k(0)\
nk0 = np.linalg.norm(knxz_fc1[0, node_id, :]) # \k(0)\
kzz1inv = np.linalg.inv(kzz1[node_id]) # ~Kzz^-1
M1 = kzz1inv * Q1 * kzz1inv # ~M = ~Kzz^-1 ~Q ~Kzz^-1
_, lamb1, _ = np.linalg.svd(M1)
kzz1invfc = np.linalg.inv(kzz1fc[node_id]) # Kzz
M1fc = kzz1invfc * Q1fc * kzz1invfc
_, lamb1fc, _ = np.linalg.svd(M1fc)
alpha = (ntk0 / nk0)**2
beta = lamb1fc[0] / lamb1[-1]
rr = alpha / beta
llh = model1._build_likelihood().eval(session=session)
with open(args.fout, 'w') as f:
f.write('|~k0|: %E, |k0|: %E, ~lambda: %E, lambda: %E\n' % (ntk0, nk0, lamb1[-1], lamb1fc[0]))
f.write('alpha: %E, beta: %E, r: %E\n' % (alpha, beta, rr))
f.write('llh: %E\n'% llh)