-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_FR.py
202 lines (144 loc) · 7.48 KB
/
train_FR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# -*- coding: utf-8 -*-
import argparse
import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from data_loader import VideoDataset_FR
import UGCVQA_FR_model
from torchvision import transforms
import time
from scipy import stats
from scipy.optimize import curve_fit
import time
# import GPUtil
def logistic_func(X, bayta1, bayta2, bayta3, bayta4):
logisticPart = 1 + np.exp(np.negative(np.divide(X - bayta3, np.abs(bayta4))))
yhat = bayta2 + np.divide(bayta1 - bayta2, logisticPart)
return yhat
def fit_function(y_label, y_output):
beta = [np.max(y_label), np.min(y_label), np.mean(y_output), 0.5]
popt, _ = curve_fit(logistic_func, y_output, \
y_label, p0=beta, maxfev=100000000)
y_output_logistic = logistic_func(y_output, *popt)
return y_output_logistic
def main(config):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = UGCVQA_FR_model.ResNet50()
if config.multi_gpu:
model = torch.nn.DataParallel(model)
model = model.to(device)
else:
model = model.to(device)
# optimizer
optimizer = optim.Adam(model.parameters(), lr = config.conv_base_lr, weight_decay = 0.0000001)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=config.decay_interval, gamma=config.decay_ratio)
criterion = nn.MSELoss().to(device)
param_num = 0
for param in model.parameters():
param_num += int(np.prod(param.shape))
print('Trainable params: %.2f million' % (param_num / 1e6))
videos_dir = config.videos_dir
datainfo = config.datainfo
transformations_train = transforms.Compose([transforms.Resize(520), transforms.RandomCrop(448), transforms.ToTensor(),\
transforms.Normalize(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225])])
transformations_test = transforms.Compose([transforms.Resize(520),transforms.CenterCrop(448),transforms.ToTensor(),\
transforms.Normalize(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225])])
trainset = VideoDataset_FR(videos_dir, datainfo, transformations_train, 448, is_train = True)
testset = VideoDataset_FR(videos_dir, datainfo, transformations_test, 448, is_train = False)
## dataloader
train_loader = torch.utils.data.DataLoader(trainset, batch_size=config.train_batch_size,
shuffle=True, num_workers=config.num_workers)
test_loader = torch.utils.data.DataLoader(testset, batch_size=1,
shuffle=False, num_workers=config.num_workers)
best_test_criterion = -1 # SROCC min
best_test = []
print('Starting training:')
old_save_name = None
for epoch in range(config.epochs):
model.train()
batch_losses = []
batch_losses_each_disp = []
session_start_time = time.time()
for i, (video_ref, video_dis, dmos, _) in enumerate(train_loader):
video_ref = video_ref.to(device)
video_dis = video_dis.to(device)
labels = dmos.to(device).float()
outputs = model(video_ref, video_dis)
optimizer.zero_grad()
loss = criterion(labels, outputs)
batch_losses.append(loss.item())
batch_losses_each_disp.append(loss.item())
loss.backward()
optimizer.step()
if (i+1) % (config.print_samples//config.train_batch_size) == 0:
session_end_time = time.time()
avg_loss_epoch = sum(batch_losses_each_disp) / (config.print_samples//config.train_batch_size)
print('Epoch: %d/%d | Step: %d/%d | Training loss: %.4f' % \
(epoch + 1, config.epochs, i + 1, len(trainset) // config.train_batch_size, \
avg_loss_epoch))
batch_losses_each_disp = []
print('CostTime: {:.4f}'.format(session_end_time - session_start_time))
session_start_time = time.time()
avg_loss = sum(batch_losses) / (len(trainset) // config.train_batch_size)
print('Epoch %d averaged training loss: %.4f' % (epoch + 1, avg_loss))
scheduler.step()
lr = scheduler.get_last_lr()
print('The current learning rate is {:.06f}'.format(lr[0]))
with torch.no_grad():
model.eval()
label = np.zeros([len(testset)])
y_output = np.zeros([len(testset)])
for i, (video_ref, video_dis, dmos, _) in enumerate(test_loader):
video_ref = video_ref.to(device)
video_dis = video_dis.to(device)
label[i] = dmos.item()
outputs = model(video_ref, video_dis)
y_output[i] = outputs.item()
y_output_logistic = fit_function(label, y_output)
test_PLCC = stats.pearsonr(y_output_logistic, label)[0]
test_SRCC = stats.spearmanr(y_output, label)[0]
test_KRCC = stats.stats.kendalltau(y_output, label)[0]
test_RMSE = np.sqrt(((y_output_logistic-label) ** 2).mean())
print('Epoch {} completed. The result on the test databaset: SRCC: {:.4f}, KRCC: {:.4f}, PLCC: {:.4f}, and RMSE: {:.4f}'.format(epoch + 1, \
test_SRCC, test_KRCC, test_PLCC, test_RMSE))
if test_SRCC > best_test_criterion:
print("Update best model using best_test_criterion in epoch {}".format(epoch + 1))
best_test_criterion = test_SRCC
best_test = [test_SRCC, test_KRCC, test_PLCC, test_RMSE]
print('Saving model...')
if not os.path.exists(config.ckpt_path):
os.makedirs(config.ckpt_path)
if epoch > 0:
if os.path.exists(old_save_name):
os.remove(old_save_name)
save_model_name = os.path.join(config.ckpt_path, config.model_name + '_' + config.database + '_NR_v'+ str(config.exp_version) + '_epoch_%d_SRCC_%f.pth' % (epoch + 1, test_SRCC))
torch.save(model.state_dict(), save_model_name)
old_save_name = save_model_name
print('Training completed.')
print('The best training result on the test dataset SRCC: {:.4f}, KRCC: {:.4f}, PLCC: {:.4f}, and RMSE: {:.4f}'.format( \
best_test[0], best_test[1], best_test[2], best_test[3]))
np.save(os.path.join(config.results_path, config.model_name + '_' + config.database + '_FR_v'+ str(config.exp_version)), best_test)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--database', type=str)
parser.add_argument('--model_name', type=str)
parser.add_argument('--conv_base_lr', type=float)
parser.add_argument('--datainfo', type=str, default='json_files/ugcset_dmos.json')
parser.add_argument('--videos_dir', type=str)
parser.add_argument('--decay_ratio', type=float)
parser.add_argument('--decay_interval', type=int)
parser.add_argument('--results_path', type=str)
parser.add_argument('--exp_version', type=int)
parser.add_argument('--print_samples', type=int)
parser.add_argument('--train_batch_size', type=int)
parser.add_argument('--num_workers', type=int)
parser.add_argument('--epochs', type=int)
# misc
parser.add_argument('--ckpt_path', type=str)
parser.add_argument('--reults_path', type=str)
parser.add_argument('--multi_gpu', action='store_true')
parser.add_argument('--gpu_ids', type=list, default=None)
config = parser.parse_args()
main(config)