This repository has been archived by the owner on Oct 25, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
170 lines (153 loc) · 7.62 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import argparse
import sys
import tensorflow as tf
from tensorflow.python.training import training_util
from utils import *
from models import *
from methods import *
def configure_learning_rate(args, global_step):
if args.lr_policy == 'fixed':
return tf.constant(args.lr, name='fixed_learning_rate')
elif args.lr_policy == 'inv':
with tf.variable_scope("InverseTimeDecay"):
global_step = tf.cast(global_step, tf.float32)
denom = tf.add(1.0, tf.multiply(args.lr_gamma, global_step))
return tf.multiply(args.lr, tf.pow(denom, -args.lr_power))
else:
raise ValueError('lr_policy [%s] was not recognized',
args.lr_policy)
def main(args):
# Log
if args.log_dir:
if tf.gfile.Exists(args.log_dir):
tf.gfile.DeleteRecursively(args.log_dir)
tf.gfile.MakeDirs(args.log_dir)
# Preprocess
mean = mean_file_loader('ilsvrc_2012')
train_transform = transforms.Compose([
transforms.Scale(256),
transforms.Normalize(mean),
transforms.RandomCrop(227),
transforms.RandomHorizontalFlip()
], 'TrainPreprocess')
test_transform = transforms.Compose([
transforms.Scale(256),
transforms.Normalize(mean),
transforms.CenterCrop(227)
], 'TestPreprocess')
# Datasets
source_dataset = datasets.CSVImageLabelDataset(args.source)
target_dataset = datasets.CSVImageLabelDataset(args.target)
# Loaders
source, (source_init,) = loader.load_data(
loader.load_dataset(source_dataset, batch_size=args.batch_size,
transforms=(train_transform,)))
target, (target_train_init, target_test_init) = loader.load_data(
loader.load_dataset(target_dataset, batch_size=args.batch_size,
transforms=(train_transform,)),
loader.load_dataset(target_dataset, batch_size=args.batch_size,
transforms=(test_transform,)))
# Variables
training = tf.get_variable('train', initializer=True, trainable=False,
collections=[tf.GraphKeys.LOCAL_VARIABLES])
# Loss weights
loss_weights = [float(i) for i in args.loss_weights.split(',') if i]
# Construct base model
base_model = Alexnet(training, fc=-1, pretrained=True)
# Prepare input images
# method = DeepAdaptationNetwork(base_model, 31)
method = JointAdaptationNetwork(base_model, 31)
# Losses and accuracy
loss, accuracy = method((source[0], target[0]),
(source[1], target[1]),
loss_weights)
# Optimize
global_step = training_util.create_global_step()
var_list1 = list(filter(lambda x: not x.name.startswith('Linear'),
tf.global_variables()))
var_list2 = list(filter(lambda x: x.name.startswith('Linear'),
tf.global_variables()))
grads = tf.gradients(loss, var_list1 + var_list2)
learning_rate = configure_learning_rate(args, global_step)
train_op = tf.group(
tf.train.MomentumOptimizer(learning_rate, args.momentum)
.apply_gradients(zip(grads[:len(var_list1)], var_list1)),
tf.train.MomentumOptimizer(learning_rate * 10, args.momentum)
.apply_gradients(zip(grads[len(var_list1):], var_list2),
global_step=global_step))
# Initializer
init = tf.group(tf.global_variables_initializer(), source_init)
train_init = tf.group(tf.assign(training, True), target_train_init)
test_init = tf.group(tf.assign(training, False), target_test_init)
# Run Session
with tf.Session() as sess:
sess.run(init)
sess.run(train_init)
for _ in range(args.max_steps):
_, lr_val, loss_val, accuracy_val, step_val = \
sess.run([train_op, learning_rate, loss, accuracy, global_step])
if step_val % args.print_freq == 0:
print(' step: %d\tlr: %.8f\tloss: %.3f\taccuracy: %.3f%%' %
(step_val, lr_val, loss_val,
float(accuracy_val) / args.batch_size * 100))
if step_val % args.test_freq == 0:
accuracies = []
sess.run(test_init)
for _ in range(20):
accuracies.append(sess.run(accuracy))
print('test accuracy: %.3f' % (float(sum(accuracies)) /
args.batch_size * 100 / 20.0))
sess.run(train_init)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--batch-size', type=int, default=64,
help='Batch size.')
parser.add_argument('--lr', type=float, default=3e-4,
help='Initial learning rate.')
parser.add_argument('--lr-policy', type=str, choices=['fixed', 'inv'],
default='inv',
help='Learning rate decay policy.')
parser.add_argument('--lr-gamma', type=float, default=2e-3,
help='Learning rate decay parameter.')
parser.add_argument('--lr-power', type=float, default=0.75,
help='Learning rate decay parameter.')
parser.add_argument('--momentum', type=float, default=0.9,
help='Weight momentum for the solver.')
parser.add_argument('--loss-weights', type=str, default='',
help='Comma separated list of loss weights.')
parser.add_argument('--max-steps', type=int, default=50000,
help='Number of steps to run trainer.')
parser.add_argument('--source', type=str,
default=os.path.join(os.path.dirname(__file__),
'data/office/amazon.csv'),
help='Source list file of which every lines are '
'space-separated image paths and labels.')
parser.add_argument('--target', type=str,
default=os.path.join(os.path.dirname(__file__),
'data/office/webcam.csv'),
help='Target list file with same layout of source list '
'file. Labels are only used for evaluation.')
parser.add_argument('--base-model', type=str, choices=['alexnet'],
default='alexnet', help='Basic model to use.')
parser.add_argument('--method', type=str, choices=['DAN'], default='DAN',
help='Algorithm to use.')
parser.add_argument('--sampler', type=str,
choices=['none', 'fix', 'random'],
default='random',
help='Sampler for MMD and JMMD. (valid only when '
'--loss=mmd or --lost=jmmd)')
parser.add_argument('--print-freq', type=int, default=100,
help='')
parser.add_argument('--test-freq', type=int, default=300,
help='')
parser.add_argument('--kernel-mul', type=float, default=2.0,
help='Kernel multiplier for MMD and JMMD. (valid only '
'when --loss=mmd or --lost=jmmd)')
parser.add_argument('--kernel-num', type=int, default=5,
help='Number of kernel for MMD and JMMD. (valid only '
'when --loss=mmd or --lost=jmmd)')
parser.add_argument('--log-dir', type=str,default='',
help='Directory to put the log data.')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=lambda _: main(FLAGS), argv=[sys.argv[0]] + unparsed)