-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdat_sim_cox_scenario3.R
158 lines (122 loc) · 4.63 KB
/
dat_sim_cox_scenario3.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#------------------------------
#------------------------------
#simulates longitudinal data on treatment A and covariates L at 5 time points, and then generates event times according to a Cox model.
#U is an individual frailty.
#People who do not have the event are censored at time 5.
#
# SCENARIO 3: Data are generated under scenario 1. At the end, we add random error into the L variable at baseline.
#------------------------------
#------------------------------
#----
#number of visits (K+1)
n.visit=5
#----
#expit function
expit=function(x){exp(x)/(1+exp(x))}
#------------------
#parameter values
#------------------
#model for A|L
gamma.0=-1
gamma.L=0.5
#model for hazard
alpha.0=-2
alpha.A=-0.5
alpha.L=0.5
alpha.U=0.5
#test scenario with no predictive value of the model (AUC and c-index around 0.5)
#alpha.A=0
#alpha.L=0
#alpha.U=0
#test scenario with high predictive value of the model (c-index around 0.7)
#alpha.A=-0.1
#alpha.L=1.5
#alpha.U=0.5
#------------------
#simulate data
#------------------
#----
#generate U, A, L
A=matrix(nrow=n,ncol=n.visit)
L=matrix(nrow=n,ncol=n.visit)
U=rnorm(n,0,0.1)
L[,1]=rnorm(n,U,1)
A[,1]=rbinom(n,1,expit(gamma.0+gamma.L*L[,1]))
for(k in 2:n.visit){
L[,k]=rnorm(n,0.8*L[,k-1]-A[,k-1]+0.1*(k-1)+U,1)
A[,k]=ifelse(A[,k-1]==1,1,rbinom(n,1,expit(gamma.0+gamma.L*L[,k])))
}
#----
#generate event times T.obs, and event indicators D.obs
T.obs=rep(NA,n)
for(k in 1:n.visit){
u.t=runif(n,0,1)
haz=exp(alpha.0+alpha.A*A[,k]+alpha.L*L[,k]+alpha.U*U)
new.t=-log(u.t)/haz
T.obs=ifelse(is.na(T.obs) & new.t<1,k-1+new.t,T.obs)
}
D.obs=ifelse(is.na(T.obs),0,1)
T.obs=ifelse(is.na(T.obs),5,T.obs)
#-----
#Create data frame
colnames(A)=paste0("A.",0:4)
colnames(L)=paste0("L.",0:4)
dat=data.frame(id=1:n,T.obs,D.obs,A,L)
#-----
#set A to 0 in time periods after event/censoring
dat$A.1=ifelse(dat$T.obs<1,0,dat$A.1)
dat$A.2=ifelse(dat$T.obs<2,0,dat$A.2)
dat$A.3=ifelse(dat$T.obs<3,0,dat$A.3)
dat$A.4=ifelse(dat$T.obs<4,0,dat$A.4)
# #------------------
# #some summaries: may be useful if you wish to change the parameter values used above, to consider other scenarios.
# #------------------
#
# #proportion always treated
# always.treat=A[,1]+A[,2]+A[,3]+A[,4]+A[,5]
#
# #proportion never treated
# never.treat=(1-A[,1])+(1-A[,2])+(1-A[,3])+(1-A[,4])+(1-A[,5])
#
# tabyl(always.treat)
# tabyl(never.treat)
#------------------
#Reshape data into 'long' format (multiple rows per individual: 1 row for each visit)
#------------------
dat.long=reshape(data = dat,varying=c(paste0("A.",0:4),paste0("L.",0:4)),direction="long",idvar="id")
dat.long=dat.long[order(dat.long$id,dat.long$time),]
#generate start and stop times for each row
dat.long$time.stop=dat.long$time+1
dat.long=dat.long[dat.long$time<dat.long$T.obs,]
dat.long$time.stop=ifelse(dat.long$time.stop>dat.long$T.obs,dat.long$T.obs,dat.long$time.stop)
dat.long$event=ifelse(dat.long$time.stop==dat.long$T.obs & dat.long$D.obs==1,1,0)
#visit number
dat.long$visit=ave(rep(1,dim(dat.long)[1]),dat.long$id,FUN=cumsum)
#generate lagged A values
dat.long=dat.long %>%
group_by(id) %>%
mutate(Alag1 = lag(A,n=1),Alag2 = lag(A,n=2),Alag3 = lag(A,n=3),Alag4 = lag(A,n=4)) %>%
mutate(Alag1=replace_na(Alag1,0),Alag2=replace_na(Alag2,0),Alag3=replace_na(Alag3,0),Alag4=replace_na(Alag4,0))
#generate lagged L values
dat.long=dat.long %>%
group_by(id) %>%
mutate(Llag1 = lag(L,n=1),Llag2 = lag(L,n=2),Llag3 = lag(L,n=3),Llag4 = lag(L,n=4)) %>%
mutate(Llag1=replace_na(Llag1,0),Llag2=replace_na(Llag2,0),Llag3=replace_na(Llag3,0),Llag4=replace_na(Llag4,0))
#baseline L
dat.long=dat.long %>%
group_by(id) %>%
mutate(L.baseline = first(L))
#------------------
#add random error to L measurements
#------------------
#here we only add it to L.baseline.dat which is used for estimated risks only
error.var <- 1 #1 means that the error variance is same as the variance of L
L.baseline.dat=dat.long$L[dat.long$visit==1]+rnorm(n,0,sqrt(error.var))
#alternatively to add random error to L, which is also used during weights estimation
#dat.long$L[dat.long$visit==1]<-dat.long$L[dat.long$visit==1]+rnorm(n,0,sqrt(error.var))
# #dat$L.0 <- dat.long$L[dat.long$visit==1]
#
# #dat.long$L[dat.long$visit==2]<-dat.long$L[dat.long$visit==2]+rnorm(n,0,sqrt(error.var))
# #dat.long$L[dat.long$visit==3]<-dat.long$L[dat.long$visit==3]+rnorm(n,0,sqrt(error.var))
# #dat.long$L[dat.long$visit==4]<-dat.long$L[dat.long$visit==4]+rnorm(n,0,sqrt(error.var))
# #dat.long$L[dat.long$visit==5]<-dat.long$L[dat.long$visit==5]+rnorm(n,0,sqrt(0.5))