-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbuild_jesc_dataset.py
129 lines (100 loc) · 4.21 KB
/
build_jesc_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import itertools
import json
from collections import Counter, OrderedDict
from pathlib import Path
from shutil import unpack_archive
from urllib.request import urlretrieve
from tqdm import tqdm
from libs.text_encoder import create_tokenizer
def get_tokenzied_texts(file_path):
print(f"processing {file_path.name} file...")
en_tokenizer = create_tokenizer("en")
ja_tokenizer = create_tokenizer("ja")
en_tokenized_texts = []
ja_tokenized_texts = []
with file_path.open("r") as f:
for line in tqdm(f.readlines()):
en_line, ja_line = line.strip().split("\t")
en_tokenized_texts.append(en_tokenizer(en_line))
ja_tokenized_texts.append(ja_tokenizer(ja_line))
return en_tokenized_texts, ja_tokenized_texts
def get_datasets(train_file_path: Path, dev_file_path: Path, test_file_path: Path):
en_train_tokenized_texts, ja_train_tokenized_texts = get_tokenzied_texts(train_file_path)
en_val_tokenized_texts, ja_val_tokenized_texts = get_tokenzied_texts(dev_file_path)
en_test_tokenized_texts, ja_test_tokenized_texts = get_tokenzied_texts(test_file_path)
en_counter = Counter(list(itertools.chain.from_iterable(en_train_tokenized_texts)))
ja_counter = Counter(list(itertools.chain.from_iterable(ja_train_tokenized_texts)))
en_results = {
"train_texts": en_train_tokenized_texts,
"val_texts": en_val_tokenized_texts,
"test_texts": en_test_tokenized_texts,
"word_freqs": OrderedDict(sorted(en_counter.items(), key=lambda x: x[1], reverse=True)),
}
ja_results = {
"train_texts": ja_train_tokenized_texts,
"val_texts": ja_val_tokenized_texts,
"test_texts": ja_test_tokenized_texts,
"word_freqs": OrderedDict(sorted(ja_counter.items(), key=lambda x: x[1], reverse=True)),
}
return en_results, ja_results
def write_parameter_settings(base_path: Path):
settings = {
"params": {
"n_dim": 256,
"hidden_dim": 256,
"n_enc_blocks": 4,
"n_dec_blocks": 4,
"head_num": 8,
"dropout_rate": 0.3,
},
"training": {
"batch_size": 100,
"num_epoch": 15,
},
"min_freq": {
"source": 4,
"target": 4,
},
}
with (base_path / "settings.json").open("w") as f:
json.dump(settings, f, indent=2, ensure_ascii=False)
def main():
# データセットのアドレスと保存ファイル名
url = "https://nlp.stanford.edu/projects/jesc/data/split.tar.gz"
file_name = "split.tar.gz"
base_path = Path(__file__).resolve().parent / "jesc_dataset"
base_path.mkdir(exist_ok=True, parents=True)
zip_path = base_path / file_name
# 存在しない場合にファイルをダウンロードする
if not zip_path.exists():
print(f"download {file_name}")
urlretrieve(url, zip_path)
# zipファイルを展開する
print(f"expand {file_name}")
unpack_archive(zip_path, base_path)
# トークナイズ、単語頻度データ作成
dataset_path = base_path / "split"
en_results, ja_results = get_datasets(
dataset_path / "train", dataset_path / "dev", dataset_path / "test"
)
# 英語ファイルの書き込み
print("create source files...")
for key in ["train_texts", "val_texts", "test_texts"]:
with (base_path / f"src_{key}.txt").open("w") as f:
for tokenized_text in en_results[key]:
f.write(" ".join(tokenized_text) + "\n")
with (base_path / "src_word_freqs.json").open("w") as f:
json.dump(en_results["word_freqs"], f, indent=2, ensure_ascii=False)
# 日本語ファイルの書き込み
print("create target files...")
for key in ["train_texts", "val_texts", "test_texts"]:
with (base_path / f"tgt_{key}.txt").open("w") as f:
for tokenized_text in ja_results[key]:
f.write(" ".join(tokenized_text) + "\n")
with (base_path / "tgt_word_freqs.json").open("w") as f:
json.dump(ja_results["word_freqs"], f, indent=2, ensure_ascii=False)
print("write parameter settings")
write_parameter_settings(base_path)
print("done.")
if __name__ == "__main__":
main()