-
Notifications
You must be signed in to change notification settings - Fork 611
/
Copy pathanimation.py
executable file
·46 lines (43 loc) · 1.9 KB
/
animation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from config import get_arguments
from SinGAN.manipulate import *
from SinGAN.training import *
from SinGAN.imresize import imresize
import SinGAN.functions as functions
if __name__ == '__main__':
parser = get_arguments()
#parser.add_argument('--animation_start_scale', type=int, help='generation start scale', default=2)
parser.add_argument('--alpha_animation', type=float, help='animation random walk first moment', default=0.1)
#parser.add_argument('--beta_animation', type=float, help='animation random walk second moment', default=0.9)
parser.add_argument('--input_dir', help='input image dir', default='Input/Images')
parser.add_argument('--input_name', help='input image name', required=True)
parser.add_argument('--mode', help='task to be done', default='animation')
opt = parser.parse_args()
opt = functions.post_config(opt)
Gs = []
Zs = []
reals = []
NoiseAmp = []
dir2save = functions.generate_dir2save(opt)
if (os.path.exists(dir2save)):
print("output already exist")
else:
opt.min_size = 20
opt.mode = 'animation_train'
real = functions.read_image(opt)
functions.adjust_scales2image(real, opt)
dir2trained_model = functions.generate_dir2save(opt)
if (os.path.exists(dir2trained_model)):
Gs, Zs, reals, NoiseAmp = functions.load_trained_pyramid(opt)
opt.mode = 'animation'
else:
train(opt, Gs, Zs, reals, NoiseAmp)
opt.mode = 'animation'
try:
os.makedirs(dir2save)
except OSError:
pass
for start_scale in range(0, 3, 1):
for b in range(80, 100, 5):
#opt.animation_start_scale = start_scale
#opt.beta_animation = b / 100
generate_gif(Gs, Zs, reals, NoiseAmp, opt, beta=b/100, start_scale=start_scale)