-
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathapp.py
425 lines (364 loc) · 12.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
"""Main Dash App for Rainfall Analysis"""
from itertools import product
from pathlib import Path
from dash import dcc, html, Input, Output, State
import pandas as pd
import dash
import dash_bootstrap_components as dbc
import plotly.io as pio
from pyconfig import appConfig
from pytemplate import hktemplate
import pyfigure, pyfunc, pylayout, pylayoutfunc # pylint: disable=multiple-imports
pio.templates.default = hktemplate
# DASH APP CONFIG
APP_TITLE = appConfig.DASH_APP.APP_TITLE
UPDATE_TITLE = appConfig.DASH_APP.UPDATE_TITLE
DEBUG = appConfig.DASH_APP.DEBUG
# BOOTSRAP THEME
THEME = appConfig.DASH_THEME.THEME
DBC_CSS = (
"https://cdn.jsdelivr.net/gh/AnnMarieW/dash-bootstrap-templates@V1.1.2/dbc.min.css"
)
# APP
app = dash.Dash(
APP_TITLE,
external_stylesheets=[getattr(dbc.themes, THEME), DBC_CSS],
title=APP_TITLE,
update_title=UPDATE_TITLE,
meta_tags=[
{"name": "viewport", "content": "width=device-width, initial-scale=1"},
],
suppress_callback_exceptions=True,
)
server = app.server
app.layout = dbc.Container(
[
pylayout.HTML_TITLE,
pylayout.HTML_ALERT_README,
pylayout.HTML_ROW_BUTTON_UPLOAD,
pylayout.HTML_ROW_BUTTON_EXAMPLE,
pylayout.HTML_ROW_TABLE,
pylayout.HTML_ROW_BUTTON_VIZ,
pylayout.HTML_ROW_OPTIONS_GRAPH_RAINFALL,
pylayout.HTML_ROW_GRAPH_ONE,
pylayout.HTML_ROW_BUTTON_ANALYZE,
pylayout.HTML_ROW_TABLE_ANALYZE,
pylayout.HTML_ROW_BUTTON_VIZ_ANALYSIS,
pylayout.HTML_ROW_GRAPH_ANALYSIS,
pylayout.HTML_ROW_GRAPH_CUMSUM,
pylayout.HTML_ROW_GRAPH_CONSISTENCY,
html.Hr(),
pylayout.HTML_SUBTITLE,
pylayout.HTML_FOOTER,
],
fluid=False,
className="dbc",
)
@app.callback(
[
Output("row-table-uploaded", "children"),
Output("dcc-upload", "disabled"),
Output("button-upload", "disabled"),
Output("button-visualize", "disabled"),
Output("button-visualize", "outline"),
],
Input("dcc-upload", "contents"),
State("dcc-upload", "filename"),
State("dcc-upload", "last_modified"),
Input("button-example-1", "n_clicks"),
Input("button-example-2", "n_clicks"),
Input("button-example-3", "n_clicks"),
Input("button-example-4", "n_clicks"),
prevent_initial_call=True,
)
def callback_upload(content, filename, filedate, _b1, _b2, _b3, _b4):
"""Callback for uploading data and displaying the table."""
ctx = dash.callback_context
if content is not None:
children, dataframe = pyfunc.parse_upload_data(content, filename, filedate)
example_data = {
"button-example-1.n_clicks": r"./example_7Y5S.csv",
"button-example-2.n_clicks": r"./example_2Y4S_named.csv",
"button-example-3.n_clicks": r"./example_9Y1S_named.csv",
"button-example-4.n_clicks": r"./example_1Y7S_named.csv",
}
context_trigger_prop_id = ctx.triggered[0]["prop_id"]
if context_trigger_prop_id in example_data:
example_file = example_data[context_trigger_prop_id]
dataframe = pd.read_csv(Path(example_file), index_col=0, parse_dates=True)
filename = None
filedate = None
upload_disabled = False
button_upload_disabled = False
button_viz_disabled = True
button_viz_outline = True
if dataframe is not None:
editable = [False] + [True] * len(dataframe.columns)
children = pylayoutfunc.create_table_layout(
dataframe,
"output-table",
filename=filename,
filedate=filedate,
editable=editable,
renamable=True,
)
upload_disabled = False
button_upload_disabled = False
button_viz_disabled = False
button_viz_outline = False
return [
children,
upload_disabled,
button_upload_disabled,
button_viz_disabled,
button_viz_outline,
]
@app.callback(
[
Output("graph-rainfall", "figure"),
Output("row-button-download-csv", "style"),
Output("graph-rainfall", "config"),
Output("container-graphbar-options", "style"),
Output("button-analyze", "disabled"),
Output("button-analyze", "outline"),
],
Input("button-visualize", "n_clicks"),
State("output-table", "derived_virtual_data"),
State("output-table", "columns"),
State("radio-graphbar-options", "value"),
prevent_initial_call=True,
)
def callback_visualize(_, table_data, table_columns, graphbar_opt):
"""Callback for visualizing the rainfall data."""
dataframe = pyfunc.transform_to_dataframe(table_data, table_columns)
row_download_table_style = {"visibility": "visible"}
row_graph_config = {"staticPlot": False}
row_graphbar_options_style = {"visibility": "hidden"}
button_analyze_disabled = False
button_analyze_outline = False
if dataframe.size > (366 * 8):
fig = pyfigure.generate_scatter_figure(dataframe)
else:
row_graphbar_options_style = {"visibility": "visible"}
if graphbar_opt in ["group", "stack"]:
fig = pyfigure.generate_bar_figure(dataframe, graphbar_opt)
else:
fig = pyfigure.generate_scatter_figure(dataframe)
return [
fig,
row_download_table_style,
row_graph_config,
row_graphbar_options_style,
button_analyze_disabled,
button_analyze_outline,
]
@app.callback(
Output("download-csv", "data"),
Input("button-download-csv", "n_clicks"),
State("output-table", "derived_virtual_data"),
State("output-table", "columns"),
prevent_initial_call=True,
)
def callback_download_table(_, table_data, table_columns):
"""Callback for downloading the table data."""
dataframe = pyfunc.transform_to_dataframe(table_data, table_columns)
return dcc.send_data_frame(dataframe.to_csv, "derived_table.csv")
@app.callback(
[
Output("tab-analysis", "children"),
Output("button-viz-analysis", "disabled"),
Output("button-viz-analysis", "outline"),
Output("row-button-download-analysis-csv", "style"),
],
Input("button-analyze", "n_clicks"),
State("output-table", "derived_virtual_data"),
State("output-table", "columns"),
prevent_initial_call=True,
)
def callback_analyze(_, table_data, table_columns):
"""Callback for analyzing the rainfall data."""
button_viz_analysis_disabled = True
button_viz_analysis_outline = True
row_button_download_analysis_style = {"visibility": "hidden"}
try:
dataframe = pyfunc.transform_to_dataframe(table_data, table_columns)
# SUMMARY
summary_all = pyfunc.generate_summary_all(dataframe, n_days=["16D", "MS", "YS"])
tables_summary = [
pylayoutfunc.create_table_summary(
summary, f"table-analyze-{counter}", deletable=False
)
for counter, summary in enumerate(summary_all)
]
# CUMUMLATIVE SUM
cumsum = pyfunc.calculate_cumulative_sum(dataframe)
_, table_cumsum = pylayoutfunc.create_table_layout(
cumsum, "table-cumsum", deletable=False
)
table_cumsum = [table_cumsum]
# LAYOUT
tables_all = tables_summary + table_cumsum
tab_names = "Biweekly Monthly Yearly Cumulative".split()
children = pylayoutfunc.create_tabcard_table_layout(
tables_all, tab_names=tab_names
)
button_viz_analysis_disabled = False
button_viz_analysis_outline = False
row_button_download_analysis_style = {"visibility": "visible"}
except (TypeError, ValueError) as e:
children = html.Div(
f"Input data or columns are not in the expected format: {e}"
)
except KeyError as e:
children = html.Div(f"Dataframe does not have the expected columns: {e}")
return [
children,
button_viz_analysis_disabled,
button_viz_analysis_outline,
row_button_download_analysis_style,
]
@app.callback(
Output("download-analysis-csv", "data"),
Input("button-download-analysis-csv", "n_clicks"),
State("table-analyze-0", "data"),
State("table-analyze-0", "columns"),
State("table-analyze-1", "data"),
State("table-analyze-1", "columns"),
State("table-analyze-2", "data"),
State("table-analyze-2", "columns"),
State("table-cumsum", "data"),
State("table-cumsum", "columns"),
prevent_initial_call=True,
)
def callback_download_results(
_,
biweekly_data,
biweekly_columns,
monthly_data,
monthly_columns,
yearly_data,
yearly_columns,
cumsum_data,
cumsum_columns,
):
"""Callback for downloading the analysis results."""
biweekly = (biweekly_data, biweekly_columns)
monthly = (monthly_data, monthly_columns)
yearly = (yearly_data, yearly_columns)
summary_all = []
for period in (biweekly, monthly, yearly):
data, columns = period
dataframe = pyfunc.transform_to_dataframe(
data,
columns,
multiindex=True,
apply_numeric=False,
parse_dates=["max_date"],
)
summary_all.append(dataframe)
cumsum = pyfunc.transform_to_dataframe(cumsum_data, cumsum_columns)
stations = cumsum.columns.to_list()
cumsum.columns = pd.MultiIndex.from_product([stations, [""]])
dataframe_all = pd.concat(
summary_all + [cumsum],
axis=1,
keys=["Biweekly", "Monthly", "Yearly", "Cumulative"],
)
return dcc.send_data_frame(dataframe_all.to_csv, "results.csv")
@app.callback(
Output("tab-graph-analysis", "children"),
Output("tab-graph-cumsum", "children"),
Output("tab-graph-consistency", "children"),
Input("button-viz-analysis", "n_clicks"),
State("table-analyze-0", "data"),
State("table-analyze-0", "columns"),
State("table-analyze-1", "data"),
State("table-analyze-1", "columns"),
State("table-analyze-2", "data"),
State("table-analyze-2", "columns"),
State("table-cumsum", "data"),
State("table-cumsum", "columns"),
prevent_initial_call=True,
)
def callback_graph_analysis(
_,
biweekly_data,
biweekly_columns,
monthly_data,
monthly_columns,
yearly_data,
yearly_columns,
cumsum_data,
cumsum_columns,
):
"""Callback for generating the analysis graphs."""
label_periods = ["Biweekly", "Monthly", "Yearly"]
label_maxsum = ["Max + Sum"]
label_raindry = ["Dry + Rain"]
label_ufunc = label_maxsum + label_raindry
biweekly = (biweekly_data, biweekly_columns)
monthly = (monthly_data, monthly_columns)
yearly = (yearly_data, yearly_columns)
summary_all = []
for summary_period in (biweekly, monthly, yearly):
data, columns = summary_period
dataframe = pyfunc.transform_to_dataframe(
data,
columns,
multiindex=True,
apply_numeric=False,
parse_dates=["max_date"],
)
summary_all.append(dataframe)
graphs_maxsum = [
pyfigure.generate_summary_maximum_sum(
summary,
title=f"<b>{period}: {title}</b>",
period=period,
subplot_titles=["Max", "Sum"],
)
for summary, title, period in zip(summary_all, label_maxsum * 3, label_periods)
]
graphs_raindry = [
pyfigure.generate_summary_rain_dry(
summary, title=f"<b>{period}: {title}</b>", period=period
)
for summary, title, period in zip(summary_all, label_raindry * 3, label_periods)
]
graph_maxdate = [pyfigure.generate_summary_maximum_date(summary_all)]
all_graphs = graphs_maxsum + graphs_raindry + graph_maxdate
labels = [": ".join(i) for i in product(label_ufunc, label_periods)]
labels += ["Maximum Rainfall Events"]
children_analysis = pylayoutfunc.create_tabcard_graph_layout(
all_graphs, labels, active_tab="Maximum Rainfall Events"
)
# CUMSUM
cumsum = pyfunc.transform_to_dataframe(cumsum_data, cumsum_columns)
graph_cumsum = [
pyfigure.generate_cumulative_sum(cumsum, data_column=station)
for station in cumsum.columns
]
children_cumsum = pylayoutfunc.create_tabcard_graph_layout(
graph_cumsum, cumsum.columns
)
# CONSISTENCY
if cumsum.columns.size == 1:
children_consistency = (
dcc.Graph(
figure=pyfigure.generate_empty_figure(
text="Not Available for Single Station"
),
config={"staticPlot": True},
),
)
else:
graph_consistency = [
pyfigure.generate_scatter_with_trendline(cumsum, data_column=station)
for station in cumsum.columns
]
children_consistency = pylayoutfunc.create_tabcard_graph_layout(
graph_consistency, cumsum.columns
)
return children_analysis, children_cumsum, children_consistency
if __name__ == "__main__":
app.run_server(debug=DEBUG)