generated from telekom/reuse-template
-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathquestions.ts
680 lines (640 loc) · 19.5 KB
/
questions.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
// SPDX-FileCopyrightText: 2024 Deutsche Telekom AG, LlamaIndex, Vercel, Inc.
//
// SPDX-License-Identifier: MIT
import { execSync } from "child_process";
import ciInfo from "ci-info";
import fs from "fs";
import got from "got";
import ora from "ora";
import path from "path";
import { blue, green, red } from "picocolors";
import prompts from "prompts";
import { InstallAppArgs } from "./create-app";
import {
TemplateDataSource,
TemplateDataSourceType,
TemplateFramework,
} from "./helpers";
import { EXAMPLE_FILE } from "./helpers/datasources";
import { templatesDir } from "./helpers/dir";
import { supportedTools, toolsRequireConfig } from "./helpers/tools";
const OPENAI_API_URL = "https://llm-server.llmhub.t-systems.net/v2";
export type QuestionArgs = Omit<
InstallAppArgs,
"appPath" | "packageManager"
> & {
listServerModels?: boolean;
};
const supportedContextFileTypes = [
".pdf",
".doc",
".docx",
".xls",
".xlsx",
".csv",
];
const MACOS_FILE_SELECTION_SCRIPT = `
osascript -l JavaScript -e '
a = Application.currentApplication();
a.includeStandardAdditions = true;
a.chooseFile({ withPrompt: "Please select files to process:", multipleSelectionsAllowed: true }).map(file => file.toString())
'`;
const MACOS_FOLDER_SELECTION_SCRIPT = `
osascript -l JavaScript -e '
a = Application.currentApplication();
a.includeStandardAdditions = true;
a.chooseFolder({ withPrompt: "Please select folders to process:", multipleSelectionsAllowed: true }).map(folder => folder.toString())
'`;
const WINDOWS_FILE_SELECTION_SCRIPT = `
Add-Type -AssemblyName System.Windows.Forms
$openFileDialog = New-Object System.Windows.Forms.OpenFileDialog
$openFileDialog.InitialDirectory = [Environment]::GetFolderPath('Desktop')
$openFileDialog.Multiselect = $true
$result = $openFileDialog.ShowDialog()
if ($result -eq 'OK') {
$openFileDialog.FileNames
}
`;
const WINDOWS_FOLDER_SELECTION_SCRIPT = `
Add-Type -AssemblyName System.windows.forms
$folderBrowser = New-Object System.Windows.Forms.FolderBrowserDialog
$dialogResult = $folderBrowser.ShowDialog()
if ($dialogResult -eq [System.Windows.Forms.DialogResult]::OK)
{
$folderBrowser.SelectedPath
}
`;
const defaults: QuestionArgs = {
template: "streaming",
framework: "fastapi",
listServerModels: true,
observability: "none",
ui: "shadcn",
frontend: false,
openAiKey: "",
llamaCloudKey: "",
useLlamaParse: false,
model: "gpt-3.5-turbo",
embeddingModel: "text-embedding-ada-002",
communityProjectConfig: undefined,
llamapack: "",
postInstallAction: "dependencies",
dataSources: [],
tools: [],
};
const handlers = {
onCancel: () => {
console.error("Exiting.");
process.exit(1);
},
};
const getVectorDbChoices = (framework: TemplateFramework) => {
const choices = [
{
title: "No, just store the data in the file system",
value: "none",
},
{ title: "MongoDB", value: "mongo" },
{ title: "PostgreSQL", value: "pg" },
{ title: "Pinecone", value: "pinecone" },
{ title: "Milvus", value: "milvus" },
];
const vectordbLang = framework === "fastapi" ? "python" : "typescript";
const compPath = path.join(templatesDir, "components");
const vectordbPath = path.join(compPath, "vectordbs", vectordbLang);
const availableChoices = fs
.readdirSync(vectordbPath)
.filter((file) => fs.statSync(path.join(vectordbPath, file)).isDirectory());
const displayedChoices = choices.filter((choice) =>
availableChoices.includes(choice.value),
);
return displayedChoices;
};
export const getDataSourceChoices = (
framework: TemplateFramework,
selectedDataSource: TemplateDataSource[],
) => {
const choices = [];
if (selectedDataSource.length > 0) {
choices.push({
title: "No",
value: "no",
});
}
if (selectedDataSource === undefined || selectedDataSource.length === 0) {
choices.push({
title: "No data, just a simple chat",
value: "none",
});
choices.push({
title: "Use an example PDF",
value: "exampleFile",
});
}
choices.push(
{
title: `Use local files (${supportedContextFileTypes.join(", ")})`,
value: "file",
},
{
title:
process.platform === "win32"
? "Use a local folder"
: "Use local folders",
value: "folder",
},
);
if (framework === "fastapi") {
choices.push({
title: "Use website content (requires Chrome)",
value: "web",
});
// Add db source if there is no db source already
if (!selectedDataSource.some((ds) => ds.type === "db")) {
choices.push({
title: "Use data from a database (Mysql)",
value: "db",
});
}
}
return choices;
};
const selectLocalContextData = async (type: TemplateDataSourceType) => {
try {
let selectedPath: string = "";
let execScript: string;
let execOpts: any = {};
switch (process.platform) {
case "win32": // Windows
execScript =
type === "file"
? WINDOWS_FILE_SELECTION_SCRIPT
: WINDOWS_FOLDER_SELECTION_SCRIPT;
execOpts = { shell: "powershell.exe" };
break;
case "darwin": // MacOS
execScript =
type === "file"
? MACOS_FILE_SELECTION_SCRIPT
: MACOS_FOLDER_SELECTION_SCRIPT;
break;
default: // Unsupported OS
console.log(red("Unsupported OS error!"));
process.exit(1);
}
selectedPath = execSync(execScript, execOpts).toString().trim();
const paths =
process.platform === "win32"
? selectedPath.split("\r\n")
: selectedPath.split(", ");
for (const p of paths) {
if (
fs.statSync(p).isFile() &&
!supportedContextFileTypes.includes(path.extname(p))
) {
console.log(
red(
`Please select a supported file type: ${supportedContextFileTypes}`,
),
);
process.exit(1);
}
}
return paths;
} catch (error) {
console.log(
red(
"Got an error when trying to select local context data! Please try again or select another data source option.",
),
);
process.exit(1);
}
};
export const onPromptState = (state: any) => {
if (state.aborted) {
// If we don't re-enable the terminal cursor before exiting
// the program, the cursor will remain hidden
process.stdout.write("\x1B[?25h");
process.stdout.write("\n");
process.exit(1);
}
};
const getAvailableModelChoices = async (
selectEmbedding: boolean,
apiKey?: string,
listServerModels?: boolean,
) => {
const defaultLLMModels = [
"Llama2-70b-Instruct",
"Mixtral-8x7B-Instruct-v0.1",
"Zephyr-7b-beta",
];
const defaultEmbeddingModels = [
"paraphrase-multilingual-mpnet-base-v2",
"jina-embeddings-v2-base-de",
"text-embedding-bge-m3",
];
const isEmbeddingModel = (model_id: string) => {
return (
model_id.includes("embedding") ||
defaultEmbeddingModels.includes(model_id)
);
};
const isLLMModels = (model_id: string) => {
return !isEmbeddingModel(model_id);
};
if (apiKey && listServerModels) {
const spinner = ora("Fetching available models").start();
try {
const response = await got(`${OPENAI_API_URL}/models`, {
headers: {
Authorization: "Bearer " + apiKey,
},
timeout: 5000,
responseType: "json",
});
const data: any = await response.body;
spinner.stop();
return data.data
.filter((model: any) =>
selectEmbedding ? isEmbeddingModel(model.id) : isLLMModels(model.id),
)
.map((el: any) => {
return {
title: el.id,
value: el.id,
};
});
} catch (error) {
spinner.stop();
if ((error as any).response?.statusCode === 401) {
console.log(
red(
"Invalid T-Systems API key provided! Please provide a valid key and try again!",
),
);
} else {
console.log(red("Request failed: " + error));
}
process.exit(1);
}
} else {
const data = selectEmbedding ? defaultEmbeddingModels : defaultLLMModels;
return data.map((model) => ({
title: model,
value: model,
}));
}
};
export const askQuestions = async (
program: QuestionArgs,
preferences: QuestionArgs,
) => {
const getPrefOrDefault = <K extends keyof QuestionArgs>(
field: K,
): QuestionArgs[K] => preferences[field] ?? defaults[field];
// Ask for next action after installation
async function askPostInstallAction() {
if (program.postInstallAction === undefined) {
if (ciInfo.isCI) {
program.postInstallAction = getPrefOrDefault("postInstallAction");
} else {
const actionChoices = [
{
title: "Just generate code (~1 sec)",
value: "none",
},
{
title: "Start in VSCode (~1 sec)",
value: "VSCode",
},
{
title: "Generate code and install dependencies (~2 min)",
value: "dependencies",
},
];
const openAiKeyConfigured =
program.openAiKey || process.env["TSI_API_KEY"];
// If using LlamaParse, require LlamaCloud API key
const llamaCloudKeyConfigured = program.useLlamaParse
? program.llamaCloudKey || process.env["LLAMA_CLOUD_API_KEY"]
: true;
const hasVectorDb = program.vectorDb && program.vectorDb !== "none";
// Can run the app if all tools do not require configuration
if (
!hasVectorDb &&
openAiKeyConfigured &&
llamaCloudKeyConfigured &&
!toolsRequireConfig(program.tools) &&
!program.llamapack
) {
actionChoices.push({
title:
"Generate code, install dependencies, and run the app (~2 min)",
value: "runApp",
});
}
const { action } = await prompts(
{
type: "select",
name: "action",
message: "How would you like to proceed?",
choices: actionChoices,
initial: 1,
},
handlers,
);
program.postInstallAction = action;
}
}
}
program.template = getPrefOrDefault("template");
program.framework = getPrefOrDefault("framework");
program.listServerModels = getPrefOrDefault("listServerModels");
if (program.framework === "express" || program.framework === "fastapi") {
// if a backend-only framework is selected, ask whether we should create a frontend
// (only for streaming backends)
if (program.frontend === undefined) {
if (ciInfo.isCI) {
program.frontend = getPrefOrDefault("frontend");
} else {
const styledNextJS = blue("NextJS");
const styledBackend = green(
program.framework === "express"
? "Express "
: program.framework === "fastapi"
? "FastAPI (Python) "
: "",
);
const { frontend } = await prompts({
onState: onPromptState,
type: "toggle",
name: "frontend",
message: `Would you like to generate a ${styledNextJS} frontend for your ${styledBackend}backend?`,
initial: getPrefOrDefault("frontend"),
active: "Yes",
inactive: "No",
});
program.frontend = Boolean(frontend);
preferences.frontend = Boolean(frontend);
}
}
} else {
program.frontend = false;
}
program.ui = getPrefOrDefault("ui");
program.observability = getPrefOrDefault("observability");
if (!program.openAiKey) {
const { key } = await prompts(
{
type: "text",
name: "key",
message: program.listServerModels
? "Please provide your T-Systems API key (or reuse TSI_API_KEY env variable):"
: "Please provide your T-Systems API key (leave blank to skip):",
validate: (value: string) => {
if (program.listServerModels && !value) {
if (process.env.TSI_API_KEY) {
return true;
}
return "T-Systems API key is required";
}
return true;
},
},
handlers,
);
program.openAiKey = key || process.env.TSI_API_KEY;
preferences.openAiKey = key || process.env.TSI_API_KEY;
}
if (!program.model) {
if (ciInfo.isCI) {
program.model = getPrefOrDefault("model");
} else {
const { model } = await prompts(
{
type: "select",
name: "model",
message: "Which model would you like to use?",
choices: await getAvailableModelChoices(
false,
program.openAiKey,
program.listServerModels,
),
initial: 0,
},
handlers,
);
program.model = model;
preferences.model = model;
}
}
if (!program.embeddingModel && program.framework === "fastapi") {
if (ciInfo.isCI) {
program.embeddingModel = getPrefOrDefault("embeddingModel");
} else {
const { embeddingModel } = await prompts(
{
type: "select",
name: "embeddingModel",
message: "Which embedding model would you like to use?",
choices: await getAvailableModelChoices(
true,
program.openAiKey,
program.listServerModels,
),
initial: 0,
},
handlers,
);
program.embeddingModel = embeddingModel;
preferences.embeddingModel = embeddingModel;
}
}
if (!program.dataSources) {
if (ciInfo.isCI) {
program.dataSources = getPrefOrDefault("dataSources");
} else {
program.dataSources = [];
// continue asking user for data sources if none are initially provided
while (true) {
const firstQuestion = program.dataSources.length === 0;
const { selectedSource } = await prompts(
{
type: "select",
name: "selectedSource",
message: firstQuestion
? "Which data source would you like to use?"
: "Would you like to add another data source?",
choices: getDataSourceChoices(
program.framework,
program.dataSources,
),
initial: firstQuestion ? 1 : 0,
},
handlers,
);
if (selectedSource === "no" || selectedSource === "none") {
// user doesn't want another data source or any data source
break;
}
if (selectedSource === "exampleFile") {
program.dataSources.push(EXAMPLE_FILE);
} else if (selectedSource === "file" || selectedSource === "folder") {
// Select local data source
const selectedPaths = await selectLocalContextData(selectedSource);
for (const p of selectedPaths) {
program.dataSources.push({
type: "file",
config: {
path: p,
},
});
}
} else if (selectedSource === "web") {
// Selected web data source
const { baseUrl } = await prompts(
{
type: "text",
name: "baseUrl",
message: "Please provide base URL of the website: ",
initial: "https://www.llamaindex.ai",
validate: (value: string) => {
if (!value.includes("://")) {
value = `https://${value}`;
}
const urlObj = new URL(value);
if (
urlObj.protocol !== "https:" &&
urlObj.protocol !== "http:"
) {
return `URL=${value} has invalid protocol, only allow http or https`;
}
return true;
},
},
handlers,
);
program.dataSources.push({
type: "web",
config: {
baseUrl,
prefix: baseUrl,
depth: 1,
},
});
} else if (selectedSource === "db") {
const dbPrompts: prompts.PromptObject<string>[] = [
{
type: "text",
name: "dbUri",
message:
"Please enter the connection string (URI) for the database:",
initial: "mysql+pymysql://user:pass@localhost:3306/mydb",
validate: (value: string) => {
if (!value) {
return "Please provide a valid connection string";
} else if (!value.startsWith("mysql+pymysql://")) {
return "The connection string must start with 'mysql+pymysql://'";
}
return true;
},
},
{
type: (prev) => (prev ? "text" : null),
name: "query",
message: "Please enter the SQL query to fetch data:",
initial: "SELECT * FROM mytable",
},
];
program.dataSources.push({
type: "db",
config: await prompts(dbPrompts, handlers),
});
}
}
}
}
// Asking for LlamaParse if user selected file or folder data source
if (
program.dataSources.some((ds) => ds.type === "file") &&
program.useLlamaParse === undefined
) {
if (ciInfo.isCI) {
program.useLlamaParse = getPrefOrDefault("useLlamaParse");
program.llamaCloudKey = getPrefOrDefault("llamaCloudKey");
} else {
const { useLlamaParse } = await prompts(
{
type: "toggle",
name: "useLlamaParse",
message:
"Would you like to use LlamaParse (improved parser for RAG - requires API key)?",
initial: false,
active: "yes",
inactive: "no",
},
handlers,
);
program.useLlamaParse = useLlamaParse;
// Ask for LlamaCloud API key
if (useLlamaParse && program.llamaCloudKey === undefined) {
const { llamaCloudKey } = await prompts(
{
type: "text",
name: "llamaCloudKey",
message:
"Please provide your LlamaIndex Cloud API key (leave blank to skip):",
},
handlers,
);
program.llamaCloudKey = llamaCloudKey;
}
}
}
if (program.dataSources.length > 0 && !program.vectorDb) {
if (ciInfo.isCI) {
program.vectorDb = getPrefOrDefault("vectorDb");
} else {
const { vectorDb } = await prompts(
{
type: "select",
name: "vectorDb",
message: "Would you like to use a vector database?",
choices: getVectorDbChoices(program.framework),
initial: 0,
},
handlers,
);
program.vectorDb = vectorDb;
preferences.vectorDb = vectorDb;
}
}
// TODO: allow tools also without datasources
if (!program.tools && program.dataSources.length > 0) {
if (ciInfo.isCI) {
program.tools = getPrefOrDefault("tools");
} else {
const options = supportedTools.filter((t) =>
t.supportedFrameworks?.includes(program.framework),
);
const toolChoices = options.map((tool) => ({
title: tool.display,
value: tool.name,
}));
const { toolsName } = await prompts({
type: "multiselect",
name: "toolsName",
message:
"Would you like to build an agent using tools? If so, select the tools here, otherwise just press enter",
choices: toolChoices,
});
const tools = toolsName?.map((tool: string) =>
supportedTools.find((t) => t.name === tool),
);
program.tools = tools;
preferences.tools = tools;
}
}
await askPostInstallAction();
};