-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtimm_ghostnet.py
64 lines (48 loc) · 2.25 KB
/
timm_ghostnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# SPDX-FileCopyrightText: © 2024 Tenstorrent AI ULC
# SPDX-License-Identifier: Apache-2.0
# Ghostnet
import os
import urllib
import pybuda
import requests
import timm
import torch
from PIL import Image
def run_ghostnet_timm(batch_size=1):
# Set PyBuda configuration parameters
compiler_cfg = pybuda.config._get_global_compiler_config() # load global compiler config object
compiler_cfg.balancer_policy = "Ribbon"
compiler_cfg.default_df_override = pybuda.DataFormat.Float16_b
os.environ["PYBUDA_RIBBON2"] = "1"
model = timm.create_model("ghostnet_100", pretrained=True)
# Create PyBuda module from PyTorch model
tt_model = pybuda.PyTorchModule("ghostnet_100_timm_pt", model)
data_config = timm.data.resolve_data_config({}, model=model)
transforms = timm.data.create_transform(**data_config)
url = "https://raw.githubusercontent.com/pytorch/hub/master/images/dog.jpg"
img = Image.open(requests.get(url, stream=True).raw).convert("RGB")
img_tensor = [transforms(img).unsqueeze(0)] * batch_size
batch_tensor = torch.cat(img_tensor, dim=0)
# Run inference on Tenstorrent device
output_q = pybuda.run_inference(tt_model, inputs=([batch_tensor]))
output = output_q.get()
# Combine outputs for data parallel runs
if os.environ.get("PYBUDA_N300_DATA_PARALLEL", "0") == "1":
concat_tensor = torch.cat((output[0].to_pytorch(), output[1].to_pytorch()), dim=0)
buda_tensor = pybuda.Tensor.create_from_torch(concat_tensor)
output = [buda_tensor]
top5_probabilities, top5_class_indices = torch.topk(output[0].value().softmax(dim=1) * 100, k=5)
# Get imagenet class mappings
url = "https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt"
image_classes = urllib.request.urlopen(url)
categories = [s.decode("utf-8").strip() for s in image_classes.readlines()]
for sample in range(batch_size):
print("Sample ID: ", sample)
for i in range(top5_probabilities.size(1)):
class_idx = top5_class_indices[sample, i]
class_prob = top5_probabilities[sample, i]
class_label = categories[class_idx]
print(f"{class_label} : {class_prob}")
print("\n")
if __name__ == "__main__":
run_ghostnet_timm()