-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtotal.py
315 lines (282 loc) · 11.7 KB
/
total.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import datamaker
import time
import os
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import pyplot
import matplotlib as mpl
from statistics import mean
plt.style.use('seaborn-whitegrid')
max_reps = 100 # How many iterations-Measurements of Spectrum
frequencies = [2.407,2.412,2.417,2.422,2.427,2.432,2.437,2.442,2.447,2.452,2.457,2.462,2.467]
channels = [1,2,3,4,5,6,7,8,9,10,11]
frequencies_stats_init = [0,0,0,0,0,0,0,0,0,0,0,0,0]
Overall_channel_stats = []
Overall_frequencies_stats = []
# Real-Time Plot - Current Iteration
fig = plt.figure(figsize=(9, 7))
ax = fig.add_subplot(111)
Ln, = ax.plot(frequencies,frequencies_stats_init, lw = 2)
ax.set_ylim(0,100)
ax.set(xlabel='Frequency (GHz)', ylabel='Busy Percentage (%)',
title='CURRENT: WIFI Channels Busy Percentage')
plt.ion()
plt.show()
# Real-Time Plot - All Iteration
fig_All = plt.figure(figsize=(9, 7))
ax_All = fig_All.add_subplot(111)
Ln_All, = ax_All.plot(frequencies,frequencies_stats_init, lw = 2)
ax_All.set_ylim(0,100)
ax_All.set(xlabel='Frequency (GHz)', ylabel='Busy Percentage (%)',
title='AVERAGE: WIFI Channels Busy Percentage')
plt.ion()
plt.show()
# Real-Time Plot - Channel's Busy Perc Over Time
fig_time, axs_time = plt.subplots(6, 2, figsize=(11,9))
fig_time.tight_layout(h_pad=3)
axs_time[0, 0].plot(0, 0)
axs_time[0, 0].set_ylim(0,100)
axs_time[0, 1].plot(0, 0,)
axs_time[0, 1].set_ylim(0,100)
axs_time[1, 0].plot(0, 0)
axs_time[1, 0].set_ylim(0,100)
axs_time[1, 1].plot(0, 0)
axs_time[1, 1].set_ylim(0,100)
axs_time[2, 0].plot(0, 0)
axs_time[2, 0].set_ylim(0,100)
axs_time[2, 1].plot(0, 0)
axs_time[2, 1].set_ylim(0,100)
axs_time[3, 0].plot(0, 0)
axs_time[3, 0].set_ylim(0,100)
axs_time[3, 1].plot(0, 0)
axs_time[3, 1].set_ylim(0,100)
axs_time[4, 0].plot(0, 0)
axs_time[4, 0].set_ylim(0,100)
axs_time[4, 1].plot(0, 0)
axs_time[4, 1].set_ylim(0,100)
axs_time[5, 0].plot(0, 0)
axs_time[5, 0].set_ylim(0,100)
for axss in axs_time.flat:
axss.set(xlabel='Time', ylabel='Busy % ')
# Hide x labels and tick labels for top plots and y ticks for right plots.
#for axss in axs_time.flat:
# axss.label_outer()
plt.ion()
plt.show()
############################################
mean_chan_1 = []
mean_chan_2 = []
mean_chan_3 = []
mean_chan_4 = []
mean_chan_5 = []
mean_chan_6 = []
mean_chan_7 = []
mean_chan_8 = []
mean_chan_9 = []
mean_chan_10 = []
mean_chan_11 = []
mean_f1 = []
mean_f2 = []
mean_f3 = []
mean_f4 = []
mean_f5 = []
mean_f6 = []
mean_f7 = []
mean_f8 = []
mean_f9 = []
mean_f10 = []
mean_f11 = []
mean_f12 = []
mean_f13 = []
spec_file = open('spectrum_meas.txt','w')
chan_file = open('channels_meas.txt','w')
for j in range(1,max_reps+1):
print("Iteration "+str(j))
os.system('python file_creator.py')
channel_stats = {}
input_file_channel = 'channel1_bin.txt'
output_file_channel = 'channel1_dec.txt'
busy_prc = 0
frequencies_stats = []
dict_i = 1
ann_list = []
ann_All_list = []
mean_chan_stats = [] # Mean stats of all channels from all iterations
mean_freq_stats = [] # Mean stats of all frequencies from all iterations
for i in range(1,14):
input_file_channel = input_file_channel.split("_")[0][:7] + str(i) + "_" + input_file_channel.split("_")[1]
output_file_channel = input_file_channel.split("_")[0][:7] + str(i) + "_" + output_file_channel.split("_")[1]
busy_prc = datamaker.file_parser(input_file_channel,output_file_channel)
frequencies_stats.append(busy_prc)
print("Frequency "+str(i)+" measured")
for i in range(1,12):
mean = (frequencies_stats[i-1] + frequencies_stats[i] + frequencies_stats[i+1])/3
dict_index = 'Channel_' + str(i)
channel_stats[dict_index] = round(mean,2)
# Store statistics to obtain Mean from all iterations
mean_chan_1.append(channel_stats["Channel_1"])
mean_chan_2.append(channel_stats["Channel_2"])
mean_chan_3.append(channel_stats["Channel_3"])
mean_chan_4.append(channel_stats["Channel_4"])
mean_chan_5.append(channel_stats["Channel_5"])
mean_chan_6.append(channel_stats["Channel_6"])
mean_chan_7.append(channel_stats["Channel_7"])
mean_chan_8.append(channel_stats["Channel_8"])
mean_chan_9.append(channel_stats["Channel_9"])
mean_chan_10.append(channel_stats["Channel_10"])
mean_chan_11.append(channel_stats["Channel_11"])
mean_f1.append(frequencies_stats[0])
mean_f2.append(frequencies_stats[1])
mean_f3.append(frequencies_stats[2])
mean_f4.append(frequencies_stats[3])
mean_f5.append(frequencies_stats[4])
mean_f6.append(frequencies_stats[5])
mean_f7.append(frequencies_stats[6])
mean_f8.append(frequencies_stats[7])
mean_f9.append(frequencies_stats[8])
mean_f10.append(frequencies_stats[9])
mean_f11.append(frequencies_stats[10])
mean_f12.append(frequencies_stats[11])
mean_f13.append(frequencies_stats[12])
mean_chan_stats = [round(sum(mean_chan_1)/len(mean_chan_1),2),round(sum(mean_chan_2)/len(mean_chan_2)),
round(sum(mean_chan_3)/len(mean_chan_3),2),round(sum(mean_chan_4)/len(mean_chan_4)),
round(sum(mean_chan_5)/len(mean_chan_5),2),round(sum(mean_chan_6)/len(mean_chan_6)),
round(sum(mean_chan_7)/len(mean_chan_7),2),round(sum(mean_chan_8)/len(mean_chan_8)),
round(sum(mean_chan_9)/len(mean_chan_9),2),round(sum(mean_chan_10)/len(mean_chan_10)),
round(sum(mean_chan_11)/len(mean_chan_11),2)]
mean_freq_stats = [sum(mean_f1)/len(mean_f1),sum(mean_f2)/len(mean_f2),
sum(mean_f3)/len(mean_f3),sum(mean_f4)/len(mean_f4),
sum(mean_f5)/len(mean_f5),sum(mean_f6)/len(mean_f6),
sum(mean_f7)/len(mean_f7),sum(mean_f8)/len(mean_f8),
sum(mean_f9)/len(mean_f9),sum(mean_f10)/len(mean_f10),
sum(mean_f11)/len(mean_f11),sum(mean_f12)/len(mean_f12),
sum(mean_f13)/len(mean_f13)]
############## Plot to diagram of CURRENT iterations ##################################################
Ln.set_ydata(frequencies_stats)
Ln.set_xdata(frequencies)
plt.pause(0.001)
for i in range(1,14):
spec_file.write(str(frequencies_stats[i-1])+"\n")
for i in range(1,12):
dict_index = 'Channel_' + str(i)
chan_file.write(str(channel_stats[dict_index])+"\n")
print("All measurements: " , frequencies_stats) # 13 Frequncies Measurements
optimal_channel = min(channel_stats, key = channel_stats.get)
print("Channel measurements: " , channel_stats) # 11 Channels Means (3 meas => 1 Chan)
print("Optimal Channel: " + optimal_channel)
# Plot arrows to diagram
# Annotation
for k in range(1,12):
dict_index = 'Channel_' + str(k)
if "Channel_"+str(k) == optimal_channel: # Optimal Channel
ann = ax.annotate("Channel "+str(k)+":\n"+str(channel_stats[dict_index])+"%", xy =(frequencies[k],frequencies_stats[k]+3),
xytext =(frequencies[k],frequencies_stats[k]+30),
arrowprops = dict(facecolor ='green',
shrink = 0.01),)
else:
ann = ax.annotate("Channel "+str(k)+":\n"+str(channel_stats[dict_index])+"%", xy =(frequencies[k],frequencies_stats[k]+3),
xytext =(frequencies[k],frequencies_stats[k]+10),
arrowprops = dict(facecolor ='red',
shrink = 0.01),)
plt.pause(0.001)
ann_list.append(ann)
############## Plot to Mean diagram of All iterations ##################################################
Ln_All.set_ydata(mean_freq_stats)
Ln_All.set_xdata(frequencies)
plt.pause(0.001)
# Plot arrows to diagram
# Annotation
for k in range(1,12):
if mean_chan_stats[k-1] == min(mean_chan_stats): # Optimal Channel
ann_All = ax_All.annotate("Channel "+str(k)+":\n"+str(mean_chan_stats[k-1])+"%", xy =(frequencies[k],mean_freq_stats[k]+3),
xytext =(frequencies[k],mean_freq_stats[k]+30),
arrowprops = dict(facecolor ='green',
shrink = 0.01),)
else:
ann_All = ax_All.annotate("Channel "+str(k)+":\n"+str(mean_chan_stats[k-1])+"%", xy =(frequencies[k],mean_freq_stats[k]+3),
xytext =(frequencies[k],mean_freq_stats[k]+10),
arrowprops = dict(facecolor ='red',
shrink = 0.01),)
plt.pause(0.001)
ann_All_list.append(ann_All)
#### Real-Time Plot - Channel's Busy Perc Over Time ############################################
if mean_chan_stats[0] == min(mean_chan_stats) : # optimal
axs_time[0,0].plot([*range(len(mean_chan_1))],mean_chan_1,'tab:green')
axs_time[0,0].set_title('Optimal Chan 1')
else:
axs_time[0,0].plot([*range(len(mean_chan_1))],mean_chan_1,'tab:red')
axs_time[0,0].set_title('Channel 1')
if mean_chan_stats[1] == min(mean_chan_stats) : # optimal
axs_time[0,1].plot([*range(len(mean_chan_2))],mean_chan_2,'tab:green')
axs_time[0,1].set_title('Optimal Chan 2')
else:
axs_time[0,1].plot([*range(len(mean_chan_2))],mean_chan_2,'tab:red')
axs_time[0,1].set_title('Channel 2')
if mean_chan_stats[2] == min(mean_chan_stats) : # optimal
axs_time[1,0].plot([*range(len(mean_chan_3))],mean_chan_3,'tab:green')
axs_time[1,0].set_title('Optimal Chan 3')
else:
axs_time[1,0].plot([*range(len(mean_chan_3))],mean_chan_3,'tab:red')
axs_time[1,0].set_title('Channel 3')
if mean_chan_stats[3] == min(mean_chan_stats) : # optimal
axs_time[1,1].plot([*range(len(mean_chan_4))],mean_chan_4,'tab:green')
axs_time[1,1].set_title('Optimal Chan 4')
else:
axs_time[1,1].plot([*range(len(mean_chan_4))],mean_chan_4,'tab:red')
axs_time[1,1].set_title('Channel 4')
if mean_chan_stats[4] == min(mean_chan_stats) : # optimal
axs_time[2,0].plot([*range(len(mean_chan_5))],mean_chan_5,'tab:green')
axs_time[2,0].set_title('Optimal Chan 5')
else:
axs_time[2,0].plot([*range(len(mean_chan_5))],mean_chan_5,'tab:red')
axs_time[2,0].set_title('Channel 5')
if mean_chan_stats[5] == min(mean_chan_stats) : # optimal
axs_time[2,1].plot([*range(len(mean_chan_6))],mean_chan_6,'tab:green')
axs_time[2,1].set_title('Optimal Chan 6')
else:
axs_time[2,1].plot([*range(len(mean_chan_6))],mean_chan_6,'tab:red')
axs_time[2,1].set_title('Channel 6')
if mean_chan_stats[6] == min(mean_chan_stats) : # optimal
axs_time[3,0].plot([*range(len(mean_chan_7))],mean_chan_7,'tab:green')
axs_time[3,0].set_title('Optimal Chan 7')
else:
axs_time[3,0].plot([*range(len(mean_chan_7))],mean_chan_7,'tab:red')
axs_time[3,0].set_title('Channel 7')
if mean_chan_stats[7] == min(mean_chan_stats) : # optimal
axs_time[3,1].plot([*range(len(mean_chan_8))],mean_chan_8,'tab:green')
axs_time[3,1].set_title('Optimal Chan 8')
else:
axs_time[3,1].plot([*range(len(mean_chan_8))],mean_chan_8,'tab:red')
axs_time[3,1].set_title('Channel 8')
if mean_chan_stats[8] == min(mean_chan_stats) : # optimal
axs_time[4,0].plot([*range(len(mean_chan_9))],mean_chan_9,'tab:green')
axs_time[4,0].set_title('Optimal Chan 9')
else:
axs_time[4,0].plot([*range(len(mean_chan_9))],mean_chan_9,'tab:red')
axs_time[4,0].set_title('Channel 9')
if mean_chan_stats[9] == min(mean_chan_stats) : # optimal
axs_time[4,1].plot([*range(len(mean_chan_10))],mean_chan_10,'tab:green')
axs_time[4,1].set_title('Optimal Chan 10')
else:
axs_time[4,1].plot([*range(len(mean_chan_10))],mean_chan_10,'tab:red')
axs_time[4,1].set_title('Channel 10')
if mean_chan_stats[10] == min(mean_chan_stats) : # optimal
axs_time[5,0].plot([*range(len(mean_chan_11))],mean_chan_11,'tab:green')
axs_time[5,0].set_title('Optimal Channel 11')
else:
axs_time[5,0].plot([*range(len(mean_chan_11))],mean_chan_11,'tab:red')
axs_time[5,0].set_title('Channel 11')
plt.pause(0.001)
#################################################################################################
if j != max_reps:
print("Going to sleep...")
time.sleep(5)
for i, a in enumerate(ann_list):
a.remove()
for i, a in enumerate(ann_All_list):
a.remove()
else: # End of Measurements
fig_All.savefig("Mean_Busy_Percentage.png")
fig_time.savefig("Channels_in_Time.png")
print("Terminating...")
time.sleep(10)