-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtransformer.py
596 lines (494 loc) · 26.7 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import argparse
import os
import time
from typing import Dict, List, Tuple
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from absl import app as absl_app
from bert.tokenization.bert_tokenization import FullTokenizer
import bert
from collections import namedtuple
from transformer.dataset import construct_datasets_gec, construct_tokenizer,\
construct_datatset_numpy, prepare_datasets, construct_tf_records
from transformer.utils import create_masks
from transformer.transformer_bert import TransformerBert
from transformer.transformer import Transformer
from transformer.transformer_scheduler import CustomSchedule
from transformer.serialization import get_ids_dataset_tf_records, upload_blob,\
get_tokenizers_ckeckpoint
import beam_search
# TPU cloud params
tf.compat.v1.flags.DEFINE_string(
"tpu", default='gec',
help="The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
tf.compat.v1.flags.DEFINE_string(
"tpu_zone", default='us-central1-f',
help="[Optional] GCE zone where the Cloud TPU is located in. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.compat.v1.flags.DEFINE_string(
"gcp_project", default='rogec-271608',
help="[Optional] Project name for the Cloud TPU-enabled project. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.compat.v1.flags.DEFINE_bool("use_tpu", False, "Use TPUs rather than plain CPUs")
tf.compat.v1.flags.DEFINE_string('bucket', default='ro-gec', help='path from where to load bert')
# paths for datasets 1k_clean_dirty_better.txt 30k_clean_dirty_better.txt 10_mil_dirty_clean_better.txt
tf.compat.v1.flags.DEFINE_string('dataset_file', default='corpora/cna/train/train_combined.txt', help='')
tf.compat.v1.flags.DEFINE_string('dataset_file_dev', default='corpora/cna/dev/dev_combined.txt', help='')
tf.compat.v1.flags.DEFINE_string('checkpoint', default='checkpoints/ronac_transformer_128_03',
help='Checpoint save locations, or restore')
tf.compat.v1.flags.DEFINE_string('bert_model_dir', default='bert/bert_ro_256/', help='path from where to load bert')
tf.compat.v1.flags.DEFINE_string('tf_records', default='corpora/tf_records/transformer_finetune_128', help='path to tf records folder')
tf.compat.v1.flags.DEFINE_string('info', default='info.log', help='path to tf info file')
# mode of execution
"""if bert is used, the decoder is still a transofrmer with transformer specific tokenization"""
tf.compat.v1.flags.DEFINE_bool('bert', default=False, help='use bert as encoder or transformer')
tf.compat.v1.flags.DEFINE_bool('records', default=False, help='generate tf records files + tokenizers (in path tf_records)')
tf.compat.v1.flags.DEFINE_bool('train_mode', default=False, help='do training')
tf.compat.v1.flags.DEFINE_bool('decode_mode',default=False, help='do prediction, decoding')
tf.compat.v1.flags.DEFINE_bool('separate', default=True, help='separate dev and training dataset')
tf.compat.v1.flags.DEFINE_bool('use_bucket', default=False, help='use checkpoints from bucket')
tf.compat.v1.flags.DEFINE_bool('use_txt', default=False, help='use txt files for datasets')
# model params
tf.compat.v1.flags.DEFINE_integer('num_layers', default=6, help='')
tf.compat.v1.flags.DEFINE_integer('d_model', default=768,
help='d_model size is the out of the embeddings, it must match the bert model size, if you use one')
tf.compat.v1.flags.DEFINE_integer('seq_length', default=512, help='same as d_model')
tf.compat.v1.flags.DEFINE_integer('dff', default=2048, help='')
tf.compat.v1.flags.DEFINE_integer('num_heads', default=8, help='')
tf.compat.v1.flags.DEFINE_float('dropout', default=0.1, help='')
tf.compat.v1.flags.DEFINE_integer('dict_size', default=(2**15), help='')
tf.compat.v1.flags.DEFINE_integer('epochs', default=500, help='')
tf.compat.v1.flags.DEFINE_integer('buffer_size', default=(128), help='')
tf.compat.v1.flags.DEFINE_integer('batch_size', default=32, help='')
tf.compat.v1.flags.DEFINE_float('train_dev_split', default=1.0, help='')
tf.compat.v1.flags.DEFINE_integer('total_samples', default=10000000, help='')
tf.compat.v1.flags.DEFINE_bool('show_batch_stats', default=True, help='do prediction, decoding')
tf.compat.v1.flags.DEFINE_bool('reset_opt', default=False, help='reset optimizer when training')
# deconding 100k_wiki_clean.arpa 30m_wiki_clean.arpa
tf.compat.v1.flags.DEFINE_integer('beam', default=8, help='beam width')
tf.compat.v1.flags.DEFINE_string('lm_path', default='/media/teo/drive hdd/gec/corpora/wiki_synthetic/arpa/100k_wiki_clean.arpa',
help='path to the the the language model arpa file')
tf.compat.v1.flags.DEFINE_bool('normalize_lm', default=False, help='normalize reranking by sentence length')
tf.compat.v1.flags.DEFINE_bool('normalize_beam', default=False, help='normalize beam by length')
tf.compat.v1.flags.DEFINE_bool('lm', default=False, help='use language model for reranking')
tf.compat.v1.flags.DEFINE_integer('max_seq_decoding', default=768, help='max length of the decoding sequence')
tf.compat.v1.flags.DEFINE_float('weight_lm', default=1., help='weight of the LM in decoding (should be in [0, 2])')
# for prediction purposes only
tf.compat.v1.flags.DEFINE_string('in_file_decode', default='corpora/cna/test/test_sent_wronged.txt', help='')
tf.compat.v1.flags.DEFINE_string('out_file_decode', default='corpora/cna/test/base_beam8_b/test_sent_predicted.txt', help='')
# dummy values
tf.compat.v1.flags.DEFINE_string('subwords_path', default='', help='path to subwords path')
tf.compat.v1.flags.DEFINE_string('checkpoint_path', default='', help='path to checkpoint')
args = tf.compat.v1.flags.FLAGS
if args.use_tpu or args.use_bucket:
#args.subwords_path = os.path.join('gs://', args.bucket, args.checkpoint, 'tokenizer_ro')
args.subwords_path = os.path.join(args.checkpoint, 'tokenizer_ro')
args.checkpoint_path = os.path.join('gs://', args.bucket, args.checkpoint)
else:
args.subwords_path = os.path.join(args.checkpoint, 'tokenizer_ro')
args.checkpoint_path = args.checkpoint
if args.d_model == 64:
args.seq_length = 64
args.dff = 64
args.num_heads = 2
args.num_layers = 2
args.max_seq_decoding = 64
args.dict_size = 1024
args.dropout = 0.2
elif args.d_model == 128:
args.seq_length = 128
args.dff = 128
args.num_heads = 2
args.num_layers = 3
args.max_seq_decoding = 128
args.dict_size = 2048
args.dropout = 0.2
elif args.d_model == 256:
args.seq_length = 256
elif args.d_model == 768:
args.seq_length = 512
if args.decode_mode:
args.batch_size = args.beam
tokenizer_pt, tokenizer_en, tokenizer_ro, tokenizer_bert = None, None, None, None
transformer, optimizer = None, None
lm_model = None
eval_loss, eval_accuracy = None, None
strategy = None
train_step_signature = [tf.TensorSpec(shape=(None, 2, args.seq_length), dtype=tf.int64),
tf.TensorSpec(shape=(None, args.seq_length), dtype=tf.int64)]
eval_step_signature = train_step_signature
class Beam(namedtuple("Beam", ["log_prob", "ids", "length"])):
"""A finished beam
Args:
probs: Log probability of them beam
finished: List of ids of the the beam
lengths: Length of the beam
"""
pass
def correct_from_file(in_file: str, out_file: str):
with open(in_file, 'r', encoding='utf-8') as fin, open(out_file, 'w', encoding='utf-8') as fout:
for line in fin:
print('original: ', line)
predicted_sentence = correct_gec(line)
print('written: ', predicted_sentence)
fout.write(predicted_sentence.strip())
fout.write('\n')
fout.flush()
def correct_gec(sentence: str, plot=''):
global tokenizer_ro, lm_model
import kenlm
# install kenlm from https://github.com/kpu/kenlm
if lm_model is None:
lm_model = kenlm.Model(args.lm_path)
beams, attention_weights = generate_sentence_beam(sentence)
candidates = []
for beam in beams:
sentence_ids = []
for i in beam.ids:
if i < tokenizer_ro.vocab_size:
sentence_ids.append(i)
if i == tokenizer_ro.vocab_size + 1:
break
predicted_sentence = tokenizer_ro.decode(sentence_ids)
lm_prob = lm_model.score(predicted_sentence, bos=True, eos=True)
if args.lm:
if args.normalize_lm:
cand_prob = beam.log_prob + 10 * args.weight_lm * lm_prob * (1.0/beam.length)
else:
cand_prob = beam.log_prob + args.weight_lm * lm_prob
else:
cand_prob = beam.log_prob
candidates.append((cand_prob, predicted_sentence))
print('pred: {} beam p: {} lm: {} final: {}'.format(predicted_sentence, beam.log_prob, lm_prob, cand_prob))
candidates = sorted(candidates, key = lambda x: x[0], reverse=True)
print('chosen: ', candidates[0][1])
return candidates[0][1]
def init_beam(vocab_size, end_token_id, beam_width=1):
length_penalty = 0.6 if args.normalize_beam else 0.0
config = beam_search.BeamSearchConfig(
beam_width=beam_width,
vocab_size=vocab_size,
eos_token=end_token_id,
length_penalty_weight=length_penalty,
choose_successors_fn=beam_search.choose_top_k)
beam_state = beam_search.BeamSearchState(
log_probs=tf.nn.log_softmax(tf.ones(config.beam_width)),
lengths=tf.constant(
1, shape=[config.beam_width], dtype=tf.int32),
finished=tf.zeros(
[config.beam_width], dtype=tf.bool))
return config, beam_state
def generate_sentence_beam(inp_sentence: str):
global tokenizer_ro, tokenizer_bert, transformer, optimizer, args
inp_sentence = inp_sentence.strip()
if tokenizer_ro is None or (args.bert and tokenizer_bert is None):
tokenizer_ro, tokenizer_bert = get_tokenizers_ckeckpoint(args)
if transformer is None:
transformer, optimizer = get_model_gec()
if args.bert:
ckpt = tf.train.Checkpoint(decoder=transformer.decoder,
final_layer=transformer.final_layer, optimizer=optimizer)
else:
ckpt = tf.train.Checkpoint(transformer=transformer, optimizer=optimizer)
ckpt_manager = tf.train.CheckpointManager(ckpt, args.checkpoint_path, max_to_keep=5)
if ckpt_manager.latest_checkpoint:
# loading mechanis matches variables from the tf graph and resotres their values
ckpt.restore(ckpt_manager.latest_checkpoint)
else:
tf.compat.v1.logging.error('no checkpoints for transformers, aborting')
return None
start_token, end_token = [tokenizer_ro.vocab_size], [tokenizer_ro.vocab_size + 1]
if args.bert:
inp_sentence = tokenizer_bert.convert_tokens_to_ids(['[CLS]'] +
tokenizer_bert.tokenize(inp_sentence) + ['[SEP]'])
else:
in_sentence = inp_sentence
inp_sentence = start_token + tokenizer_ro.encode(inp_sentence) + end_token
# print(tokenizer_ro.encode(in_sentence))
start_token_id, end_token_id = tokenizer_ro.vocab_size, tokenizer_ro.vocab_size + 1
# duplicate x beam_width == batch size
encoder_input = tf.expand_dims(inp_sentence, 0)
encoder_input = tf.tile(encoder_input, [args.beam, 1])
decoder_input = [start_token_id] * args.beam
output = tf.expand_dims(decoder_input, 1) # for batch size == beam_wisth
# beam search init
config, beam_state = init_beam(vocab_size=(args.dict_size + 2),
end_token_id=end_token_id,
beam_width=args.beam)
beam_values = tf.constant(start_token_id, shape=(1, args.beam))
beam_parents = tf.zeros((2, args.beam), dtype=tf.int32)
for i in range(args.max_seq_decoding):
enc_padding_mask, combined_mask, dec_padding_mask = create_masks(
encoder_input, output)
if args.bert:
inp_seg = tf.zeros(shape=encoder_input.shape, dtype=tf.dtypes.int64)
predictions, attention_weights = transformer(encoder_input, inp_seg, output,
False, enc_padding_mask, combined_mask,
dec_padding_mask)
else:
predictions, attention_weights = transformer(encoder_input, output,
False, enc_padding_mask,
combined_mask, dec_padding_mask)
# !predictions.shape == (batch_size, i, vocab_size) (predicts a softmax for each existing word!)
beam_pred = tf.squeeze(predictions[: ,-1:, :], 1) # (batch_size, 1, vocab_size), select only the last word
bs_output, beam_state = beam_search.beam_search_step(time_=i, logits=beam_pred,
beam_state=beam_state, config=config)
# add new predictions to the beams decoder
bs_output_predicted_ids = tf.expand_dims(bs_output.predicted_ids, axis=0)
beam_values = tf.concat([beam_values, bs_output_predicted_ids], axis=0)
res = tf.cast(beam_search.gather_tree_py(beam_values.numpy(), beam_parents.numpy()), dtype=tf.int32)
output = tf.transpose(res)
bs_output_beam_parent_ids = tf.expand_dims(bs_output.beam_parent_ids, axis=0)
beam_parents = tf.concat([beam_parents, bs_output_beam_parent_ids], axis=0)
all_finished = tf.reduce_all(beam_state.finished) # and
if all_finished: break
beams = []
for i, out in enumerate(output):
b = Beam(log_prob=beam_state.log_probs[i].numpy(), ids=out.numpy(), length=len(out.numpy()))
beams.append(b)
return beams, attention_weights # return one of them
def get_model_gec():
global args, transformer, tokenizer_ro
vocab_size = args.dict_size + 2
learning_rate = CustomSchedule(args.d_model)
optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98,
epsilon=1e-9)
if args.bert is True:
transformer = TransformerBert(args.num_layers, args.d_model, args.num_heads, args.dff,
vocab_size, vocab_size,
model_dir=args.bert_model_dir,
pe_input=vocab_size,
pe_target=vocab_size,
rate=args.dropout, args=args)
tf.compat.v1.logging.info('transformer bert loaded')
else:
transformer = Transformer(args.num_layers, args.d_model, args.num_heads, args.dff,
vocab_size, vocab_size,
pe_input=vocab_size,
pe_target=vocab_size,
rate=args.dropout)
tf.compat.v1.logging.info('transformer model constructed')
return transformer, optimizer
def loss_function(real, pred):
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=tf.keras.losses.Reduction.NONE)
# mask to compute loss
mask = tf.math.logical_not(tf.math.equal(real, 0))
loss_ = loss_object(real, pred)
mask = tf.cast(mask, dtype=tf.float32)
loss_ *= mask
loss_ = tf.cast(loss_, dtype=tf.float32)
loss_sum = tf.cast(tf.reduce_sum(loss_), tf.float32)
mask_sum = tf.cast(tf.reduce_sum(mask), tf.float32)
loss_reduced = tf.divide(loss_sum, mask_sum)
return loss_reduced
def acc_function(real, pred):
pred_targets = tf.math.argmax(pred, axis=-1)
pred_targets = tf.cast(pred_targets, tf.int64)
eq = tf.equal(pred_targets, real)
eq = tf.cast(eq, tf.int64)
mask = tf.math.logical_not(tf.math.equal(real, 0))
mask = tf.cast(mask, tf.int64)
sum_mask = tf.cast(tf.reduce_sum(mask), tf.float32)
sum_masked_eq = tf.cast(tf.reduce_sum(eq * mask), tf.float32)
accuracy = tf.divide(sum_masked_eq, sum_mask)
return accuracy
def print_stats(args, epoch, stage, batch_idx, loss, acc, log):
if batch_idx is not None:
if args.show_batch_stats and (batch_idx + 1) % 100000 == 0:
tf.compat.v1.logging.info('{} - epoch {} batch {} loss {:.4f} accuracy {:.4f}'.format(
stage, epoch + 1, batch_idx, loss, acc))
log.write('{} - epoch {} batch {} loss {:.4f} accuracy {:.4f}\n'.format(
stage, epoch + 1, batch_idx, loss, acc))
log.flush()
else:
tf.compat.v1.logging.info('Final {} - epoch {} loss {:.4f} accuracy {:.4f}'.format(
stage, epoch + 1, loss, acc))
log.write('Final {} - epoch {} loss {:.4f} accuracy {:.4f} \n'.format(
stage, epoch + 1, loss, acc))
log.flush()
def train_gec():
global args, optimizer, transformer, strategy
@tf.function(input_signature=train_step_signature)
def train_step(data, inp_segs):
global transformer, optimizer, strategy
# batch, seq_length
inp, tar = data[:, 0], data[:, 1]
tar_inp = tar[:, :-1]
tar_real = tar[:, 1:]
enc_padding_mask, combined_mask, dec_padding_mask = create_masks(inp, tar_inp)
with tf.GradientTape() as tape:
if args.bert is True:
predictions, _ = transformer(inp, inp_segs, tar_inp,
True,
enc_padding_mask,
combined_mask,
dec_padding_mask)
else:
predictions, _ = transformer(inp, tar_inp,
True,
enc_padding_mask,
combined_mask,
dec_padding_mask)
loss = loss_function(tar_real, predictions)
gradients = tape.gradient(loss, transformer.trainable_variables)
optimizer.apply_gradients(zip(gradients, transformer.trainable_variables))
acc = acc_function(tar_real, predictions)
tf.compat.v1.logging.info('transformer summary: {}'.format(transformer.summary()))
return loss, acc
@tf.function(input_signature=eval_step_signature)
def eval_step(data, inp_segs):
global transformer, optimizer, eval_accuracy, eval_loss
inp, tar = data[:, 0], data[:, 1]
tar_inp = tar[:, :-1]
tar_real = tar[:, 1:]
enc_padding_mask, combined_mask, dec_padding_mask = create_masks(inp, tar_inp)
with tf.GradientTape() as tape:
if args.bert:
predictions, _ = transformer(inp, inp_segs, tar_inp,
False,
enc_padding_mask,
combined_mask,
dec_padding_mask)
else:
predictions, _ = transformer(inp, tar_inp,
False,
enc_padding_mask,
combined_mask,
dec_padding_mask)
loss = loss_function(tar_real, predictions)
acc = acc_function(tar_real, predictions)
return loss, acc
@tf.function
def distributed_train_step(dataset_inputs):
data, segs = dataset_inputs
per_example_losses, per_example_accs = strategy.experimental_run_v2(train_step, args=(data, segs))
per_example_losses = tf.stack(per_example_losses.values, axis=0)
per_example_accs = tf.stack(per_example_accs.values, axis=0)
mean_loss = strategy.reduce(tf.distribute.ReduceOp.MEAN, per_example_losses, axis=0)
mean_acc = strategy.reduce(tf.distribute.ReduceOp.MEAN, per_example_accs, axis=0)
return mean_loss, mean_acc
@tf.function
def distributed_eval_step(dataset_inputs):
data, segs = dataset_inputs
per_example_losses, per_example_accs = strategy.experimental_run_v2(eval_step, args=(data, segs))
per_example_losses = tf.stack(per_example_losses.values, axis=0)
per_example_accs = tf.stack(per_example_accs.values, axis=0)
mean_loss = strategy.reduce(tf.distribute.ReduceOp.MEAN, per_example_losses, axis=0)
mean_acc = strategy.reduce(tf.distribute.ReduceOp.MEAN, per_example_accs, axis=0)
return mean_loss, mean_acc
with open(args.info, 'wt') as log:
if args.use_txt:
train_dataset, dev_dataset = construct_datasets_gec(args, args.subwords_path)
else:
train_dataset, dev_dataset, = get_ids_dataset_tf_records(args)
train_dataset, dev_dataset = prepare_datasets(train_dataset, dev_dataset, args)
count_train, count_dev = 0, 0
for sents, seg in train_dataset:
count_train += 1
for sents, seg in dev_dataset:
count_dev += 1
tf.compat.v1.logging.info('train samples: {} dev samples: {}'.format(count_train, count_dev))
for sents, seg in train_dataset.take(1):
tf.compat.v1.logging.info('input shapes: {} {}'.format(sents.shape, seg.shape))
tf.compat.v1.logging.info('source: {} \n target: {} \n seg: {}\n'.format(sents[0][0], sents[0][1], seg[0]))
if args.use_tpu:
train_dataset = strategy.experimental_distribute_dataset(train_dataset)
dev_dataset = strategy.experimental_distribute_dataset(dev_dataset)
transformer, optimizer = get_model_gec()
# object you want to checkpoint are saved as attributes of the checkpoint obj
if args.bert:
ckpt = tf.train.Checkpoint(decoder=transformer.decoder,
final_layer=transformer.final_layer, optimizer=optimizer)
else:
ckpt = tf.train.Checkpoint(transformer=transformer, optimizer=optimizer)
ckpt_manager = tf.train.CheckpointManager(ckpt, args.checkpoint_path, max_to_keep=5)
if ckpt_manager.latest_checkpoint:
# loading mechanis matches variables from the tf graph and resotres their values
ckpt.restore(ckpt_manager.latest_checkpoint)
tf.compat.v1.logging.info('latest checkpoint restored {}'.format(args.checkpoint_path))
if args.reset_opt:
tf.compat.v1.logging.info('lr before reset: {}'.format(optimizer._decayed_lr(tf.float32)))
learning_rate = CustomSchedule(args.d_model)
optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98,
epsilon=1e-9)
tf.compat.v1.logging.info('lr after reset: {}'.format(optimizer._decayed_lr(tf.float32)))
tf.compat.v1.logging.info('starting training...')
eval_losses, train_losses, eval_accuracies, train_accuracies = [], [], [], []
for epoch in range(args.epochs):
# train
for batch_idx, data in enumerate(train_dataset):
if args.use_tpu:
mean_loss, mean_acc = distributed_train_step(data)
else:
data, inp_seg = data
mean_loss, mean_acc = train_step(data, inp_seg)
train_losses.append(mean_loss)
train_accuracies.append(mean_acc)
train_loss = tf.reduce_mean(train_losses).numpy()
train_accuracy = tf.reduce_mean(train_accuracies).numpy()
print_stats(args, epoch=epoch, stage='train', batch_idx=None,
loss=train_loss, acc=train_accuracy, log=log)
if (epoch + 1) % 2 == 0:
ckpt_save_path = ckpt_manager.save()
log.write('Saving checkpoint for epoch {} at {} \n'.format(epoch+1,
ckpt_save_path))
log.flush()
tf.compat.v1.logging.info('Saving checkpoint for epoch {} at {} \n'.format(epoch+1,
ckpt_save_path))
# eval
for batch_idx, data in enumerate(dev_dataset):
if args.use_tpu:
mean_loss, mean_acc = distributed_eval_step(data)
else:
data, inp_seg = data
mean_loss, mean_acc = eval_step(data, inp_seg)
eval_losses.append(mean_loss)
eval_accuracies.append(mean_acc)
eval_loss = tf.reduce_mean(eval_losses).numpy()
eval_accuracy = tf.reduce_mean(eval_accuracies).numpy()
print_stats(args, epoch=epoch, stage='dev', batch_idx=None,
loss=eval_loss, acc=eval_accuracy, log=log)
tf.compat.v1.logging.info('lr : {}'.format(optimizer._decayed_lr(tf.float32)))
def run_main():
if args.records:
construct_tf_records(args, args.subwords_path)
train_tf_records = os.path.join(args.tf_records, 'train.tfrecord')
dev_tf_records = os.path.join(args.tf_records, 'dev.tfrecord')
tokeinizer_ro_tf_records = os.path.join(args.tf_records, 'tokenizer_ro.subwords')
files_to_transfer = [train_tf_records, dev_tf_records, tokeinizer_ro_tf_records]
for file_path in files_to_transfer:
upload_blob(args.bucket, file_path, file_path)
if args.bert:
tokenizer_bert_tf_records = os.path.join(args.tf_records, 'tokenizer_bert.vocab')
upload_blob(args.bucket, tokenizer_bert_tf_records, tokenizer_bert_tf_records)
if args.train_mode:
train_gec()
if args.decode_mode:
correct_from_file(in_file=args.in_file_decode, out_file=args.out_file_decode)
def main(argv):
del argv
global args, strategy
if args.use_tpu == True:
tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(args.tpu,
zone=args.tpu_zone, project=args.gcp_project)
tf.config.experimental_connect_to_cluster(tpu_cluster_resolver)
tf.tpu.experimental.initialize_tpu_system(tpu_cluster_resolver)
strategy = tf.distribute.experimental.TPUStrategy(tpu_cluster_resolver)
# strategy.experimental_enable_dynamic_batch_size = False
tf.compat.v1.logging.info('Running on TPU {}'.format(tpu_cluster_resolver.cluster_spec().as_dict()['worker']))
tf.compat.v1.logging.info("Tpu replicas in sync: {}".format(strategy.num_replicas_in_sync))
with strategy.scope():
run_main()
else:
run_main()
if __name__ == "__main__":
# tf.disable_v2_behavior()
absl_app.run(main)