-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
171 lines (139 loc) · 5.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import argparse
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
logger.setLevel(logging.INFO)
import random
import os
import cv2
# https://docs.chainer.org/en/stable/reference/generated/chainer.iterators.MultiprocessIterator.html#chainer-iterators-multiprocessiterator
cv2.setNumThreads(0)
import matplotlib
matplotlib.use('Agg') # to prevent software hang
import chainer
import chainer.links as L
from chainer.datasets import split_dataset_random
from chainer.iterators import MultiprocessIterator, MultithreadIterator, SerialIterator
from chainer import training
from chainer.training import extensions
from chainer.training.triggers import MinValueTrigger
import numpy as np
from food101_dataset import get_food101_dataset
from utils import save_args, parse_device_list
def select_model(model_name):
if model_name == "resnet":
from network_resnet import ResNet50
model = ResNet50(num_classes=101)
model.disable_target_layers()
elif model_name == "mv2":
from network_mobilenet import MobileNetV2
model = MobileNetV2(101)
else:
NotImplementedError("This {} is not implemented".format(model_name))
return L.Classifier(model)
def set_random_seed(args):
logger.info("> set random seed")
random.seed(args.seed)
np.random.seed(args.seed)
main_device = args.device[0]
if chainer.backends.cuda.available and main_device >= 0:
chainer.cuda.get_device_from_id(main_device).use()
chainer.cuda.cupy.random.seed(args.seed)
def main(args):
logger.info("> begin setup")
chainer.config.cv_resize_backend = "cv2"
chainer.global_config.autotune = True
chainer.cuda.set_max_workspace_size(512 * 1024 * 1024)
chainer.config.cudnn_fast_batch_normalization = True
logger.info("> show args info")
save_args(args)
dataset_dir = args.dataset
imsize = (args.height, args.width)
logger.info("> imsize {}".format(imsize))
logger.info("> load dataset from {}".format(dataset_dir))
train_set = get_food101_dataset(dataset_dir, mode="train", imsize=imsize)
val_set = get_food101_dataset(dataset_dir, mode="val", imsize=imsize)
logger.info("> training size {}".format(len(train_set)))
logger.info("> validation size {}".format(len(val_set)))
logger.info("> make iterator")
train_iter = MultiprocessIterator(train_set, args.batch_size)
val_iter = MultiprocessIterator(
val_set, args.batch_size,
repeat=False, shuffle=False
)
model_name = args.model
logger.info("> setup mdoel {}".format(model_name))
model = select_model(model_name)
logger.info("> setup optimzier")
optimizer = chainer.optimizers.MomentumSGD()
optimizer.setup(model)
devices = parse_device_list(args.device)
logger.info("> device list: {}".format(devices))
updater = training.updaters.ParallelUpdater(
train_iter, optimizer, devices=devices)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.destination)
snapshot_interval = (1, 'epoch')
logger.info("> setup trainer")
trainer.extend(
extensions.Evaluator(val_iter, model, device=devices["main"]),
trigger=snapshot_interval
)
trainer.extend(extensions.ProgressBar())
trainer.extend(extensions.LogReport(
trigger=snapshot_interval,
log_name='log.json')
)
trainer.extend(extensions.snapshot(
filename='snapshot_epoch_{.updater.epoch}.npz'),
trigger=snapshot_interval
)
trainer.extend(extensions.snapshot_object(
model, 'model_epoch_{.updater.epoch}.npz'),
trigger=snapshot_interval
)
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))
if extensions.PlotReport.available():
trainer.extend(
extensions.PlotReport(
['main/loss', 'validation/main/loss'],
'epoch',
file_name='loss.png',
),
trigger=snapshot_interval,
)
trainer.extend(
extensions.PlotReport(
['main/accuracy', 'validation/main/accuracy'],
'epoch', file_name='accuracy.png'
),
trigger=snapshot_interval
)
if args.resume:
logger.info("resume trainer object from {}".format(args.resume))
chainer.serializers.load_npz(args.resume, trainer)
logger.info("> start to train")
trainer.run()
logger.info("> end")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model", choices=["resnet", "mv2"], type=str, default="resnet")
parser.add_argument("--seed", type=int, default=12345, help='seed for numpy cupy random module %(default)s')
parser.add_argument("--dataset", type=str, default=os.path.expanduser("~/dataset/food-101"),
help='path/to/food-101 default = %(default)s')
parser.add_argument("--destination", default="trained", help="path/to/save/directory %(default)s")
parser.add_argument("--device", nargs='+', type=int, default=[0],
help="specify gpu id on training %(default)s -1 means use cpu")
parser.add_argument("--height", type=int, default=224, help="input image height %(default)s")
parser.add_argument("--width", type=int, default=224, help="input image width %(default)s")
parser.add_argument("--batch_size", "-b", type=int, default=64, help="batch size per device %(default)s")
parser.add_argument("--epoch", "-e", type=int, default=100, help="batch size per device %(default)s")
parser.add_argument("--resume", type=str, default="", help="path/to/snapshot/of/trainer")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
set_random_seed(args)
print(args.device)
main(args)