-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathRelationAnalyzer.py
79 lines (58 loc) · 2.53 KB
/
RelationAnalyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import gensim
from scipy import spatial
import numpy as np
import nltk
from Utils import Utils
from DataProcessing import DataProcess
dataProcess = DataProcess.DataProcess()
class RelationAnalyzer(object):
def __init__(self):
pass
def performRelationAnalysis(self,claims,premises):
claimlist = claims
premiselist = premises
essayfile = Utils().getPathToFile('DataProcessing/all_essay.txt')
file = open(essayfile,"r")
corpus = file.read()
file.close()
tak_corp = [nltk.word_tokenize(corpus) ]
# ---------- Uncommet this if need to update the model ---#
#model = gensim.models.Word2Vec(tak_corp,min_count=1,size = 32)
#model.save('word2Vec.wv')
model = gensim.models.Word2Vec.load('word2Vec.wv')
modelset = set(model.wv.index2word)
result = []
for claim in claimlist:
for premise in premiselist:
sentence_1_avg_vector = self.avg_feature_vector(claim[0].split(), model=model, num_features=32, index2word_set=modelset)
sentence_2_avg_vector = self.avg_feature_vector(premise[0].split(), model=model, num_features=32, index2word_set=modelset)
sen1_sen2_similarity = 1 - spatial.distance.cosine(sentence_1_avg_vector, sentence_2_avg_vector)
if (sen1_sen2_similarity == "nan"):
pass
#print("not similar")
else:
pass
#print(sen1_sen2_similarity * 100)
result.append([claim[0],premise[0],sen1_sen2_similarity* 100])
claims = []
premises = []
for item in result:
if item[2] > 99.993:
claims.append(item[0])
premises.append(item[1])
return [claims,premises]
def avg_feature_vector(self,words, model, num_features, index2word_set):
# function to average all words vectors in a given paragraph
featureVec = np.zeros((num_features,), dtype="float32")
# print (len(featureVec))
nwords = 0
# list containing names of words in the vocabulary
# index2word_set = set(model.index2word) this is moved as input param for performance reasons
for word in words:
if word in index2word_set:
nwords = nwords + 1
# print(len(model[word]))
featureVec = np.add(featureVec, model[word])
if (nwords > 0):
featureVec = np.divide(featureVec, nwords)
return featureVec