-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path#1.py
39 lines (33 loc) · 1.3 KB
/
#1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# -*- coding: utf-8 -*-
#Installing dependencies
import tweepy
from textblob import TextBlob
#Accessing and extracting tweets from Twitter API
consumer_key = "xCGcOHVXQgIOP6YQ7nMbYvJK5"
consumer_secret = "u3LTUigU2xQOTHZAfbQhLAjSiJfrRMEqrpK2apU9drQwpixAuP"
access_token = "940672481324683264-SVrfrabu9SYVB6XytTGUQg0ceMe1Bb7"
access_token_secret = "KSmdeKxKcZhLcGbYHUNGmdia3kKCuq2Wk4j5JIPgLm92i"
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)
#Enter the TARGET for tweets(edit your target in the below line)
public_tweets = api.search("Putin")
#creating empty lists for classes
Pos = []
Nue = []
Neg = []
#pull tweets and convert them to textblob format and classify them as POSITIVE, NUETRAL or NEGATIVE based on sentiment polarity value
for tweet in public_tweets:
print(tweet.text)
analysis = TextBlob(tweet.text)
print(analysis.sentiment)
if(analysis.sentiment.polarity > 0):
Pos.append(analysis)
elif(analysis.sentiment.polarity == 0):
Nue.append(analysis)
else:
Neg.append(analysis)
#printing the tweets under each class
print("Positive tweets are:",Pos)
print("Nuetral tweets are:",Nue)
print("Negative tweets are:",Neg)