-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrbb_post_course_survey.html
608 lines (576 loc) · 68.4 KB
/
rbb_post_course_survey.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="date" content="2024-12-13" />
<title>R Basics & Beyond Course Survey</title>
<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
var i, h, a;
for (i = 0; i < hs.length; i++) {
h = hs[i];
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
a = h.attributes;
while (a.length > 0) h.removeAttribute(a[0].name);
}
});
</script>
<style type="text/css">@font-face{font-family:"Open Sans";font-style:normal;font-weight:400;src:local("Open Sans"),local("OpenSans"),url(data:font/woff;base64,d09GRgABAAAAAE8YABIAAAAAhWwAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABHREVGAAABlAAAABYAAAAWABAA3UdQT1MAAAGsAAAADAAAAAwAFQAKR1NVQgAAAbgAAABZAAAAdN3O3ptPUy8yAAACFAAAAF8AAABgoT6eyWNtYXAAAAJ0AAAAmAAAAMyvDbOdY3Z0IAAAAwwAAABZAAAAog9NGKRmcGdtAAADaAAABJsAAAe0fmG2EWdhc3AAAAgEAAAAEAAAABAAFQAjZ2x5ZgAACBQAADWFAABReBn1yj5oZWFkAAA9nAAAADYAAAA293bipmhoZWEAAD3UAAAAHwAAACQNzAapaG10eAAAPfQAAAIIAAADbLTLWYhrZXJuAAA//AAAChcAAB6Qo+uk42xvY2EAAEoUAAABuQAAAbz3ewp/bWF4cAAAS9AAAAAgAAAAIAJ2AgpuYW1lAABL8AAAAKwAAAEyFNwvSnBvc3QAAEycAAABhgAAAiiYDmoRcHJlcAAATiQAAADyAAABCUO3lqQAAQAAAAwAAAAAAAAAAgABAAAA3AABAAAAAQAAAAoACgAKAAB4AR3HNcJBAQDA8d+rLzDatEXOrqDd4S2ayUX1beTyDwEyyrqCbXrY+xPD8ylAsF0tUn/4nlj89Z9A7+tETl5RXdNNZGDm+vXYXWjgLDRzEhoLBAYv0/0NHAAAAHgBY2Bm2cY4gYGVgYN1FqsxAwOjPIRmvsiQxviRg4mJm42NmZWFiYnlAQPTewcGhWgGBgYNBiAwdAx2ZgAK/P/LJv9PhKGFo5cpQoGBcT5IjsWDdRuQUmBgBgD40BA5AHgBY2BgYGRgBmIGBh4GFoYDQFqHQYGBBcjzYPBkqGM4zXCe4T+jIWMw0zGmW0x3FEQUpBTkFJQU1BSsFFwUShTWKAn9/w/UpQBU7cWwgOEMwwWg6iCoamEFCQUZsGpLhOr/jxn6/z/6f5CB9//e/z3/c/7++vv877MHGx6sfbDmwcoHyx5MedD9IOGByr39QHeRAABARzfieAFjE2EQZ/Bj3QYkS1m3sZ5lQAEsHgwiDBMZGP6/AfEQ5D8REAnUJfxnyv+3/1r/v/q3Eigi8W8PA1mAA0J1MzQy3GWYwdDP0Mcwk6GDoZGRn6ELAE09H/8AAAB4AXVUR3fbxhPfhRqr/6Cr3h8pi4wpN9K9V4QEYCrq7b2F0gC1R+XkS3rjKWXlfJeBfaF88jH1M6TfoqNzdWaXxZ0NM7/ftJ2ZpXfzzeVILi0uzM/NzkxPTU68Md64GQZ+vfa6d+P6tatXLl+6eOH8uVMnTxyvVg4fGisfhNfcV0f3luz/7Srmc9nMyPDQ4IDFWUUgjwMcKItSmEAASaNaEcFo069WAghjFIlAegyOQaNhIEhQxALHEqIeg2P0yHLjKUuvY+n1LbktrrKrOgUI/MUH0ebLc5Lk73yIBO4YeUrL5GGUIimuSx6mKl2tCDD8oKmCmGrkaT5Xh/p6rlphaS5PYp4kPAy3Un74OjeCdTi4nFosU6Qg+qRBsoazczLwHdeNqpVx3AW+oVjdhMThOo6YkGJTl862RFq5r263bbYSHyuswVrylsSBhHzVQKDU11g6hkfAxyOf/DVKJ1/HCvgBHtNRJ+b7eSYepeQ4VLZBqAeMjgM7/zyJJF1kuGw/YFpEq458Xrr65YTUa6VCEKGKVdJ+2FoBYYNKCwV1K6B2s1mJnPB7Ww6GtyO04ya/HHWPHs5P4J65NyVa5VA0E0LocwPci45b6tvMvohm1BYc1h12Xd2GrbbHVkjB1pzs6IKtOHeYd+JYhFasmfs9Zt+SZlo9pu8eg0utWZAKB8vjaxBQx7cSbK3Qdr2nBwM27vrXcUHtLolLJyJjK3CAbDcFDo3hsPZ63IH2RrsoWyskdB47jiKitFtcAgqj4wQQxN3PB81RCiCo0Y1jnUVYlOj5JHhJd2JBevIEeSQxDWzTN8PEE3AL90KtP11dVrC5II1L1w331pHFq10vPBGYeyUCFRvB7PAEzMltdubhb+lZ4dw9w86yyNfG++u0ZWOBkmsb+GrsrKGIN4R0XPQimnAEcj3CI6ZDR35zzHJEZlcW5cQCTMwty4umkB5B4ajHwVNhQDqdMLSAmClnhLScgYgMbQJESALUrtIvjpQz9LVxuIPSiYgQkjusZ01l4BERrPtdO9KfDErKQLne6EUbJlXHqTccNzL163tuES26ickjo5va6FIkCyIyaFEYA+lejuqlFxLWIYKmQG9W0tlMe0yXu80wPe/OavEJrd8srSFziSal30wMj5H2mH7T6H218RQ93qOFysDEgtLBoRuQUeXjyPQKexdLjoa4vtAQJiBsEXYutEo9T1/m5mUdBMbXFCzIq8Z6Yl5+7nyic+1mE3xisVatpBarpcC/mUs9/s3Csty2GRPfLMo7FrfqcS1KDxIntwVjnkEtjRJoFKEVHWmelIyxd7Y9xlqGHTSA0VfbnBks08M4W21bHczuJBrTiYixiBnsMF7PepCwTAdrGcy8UqZb5uWGvIyX9QpW0XJSrqE7hNzjjGU5u1vgRe6k5DVv4DZvpVnP6Vi0yMKLOhUvPUq9tCzvFhi5mV9KVNMvWpfRJg1bggjEml6Uz6KmiiN92dh+Gg19OHK4TmOC61TIcAFzsF7DPNQ0fkPjNzr4sMZHaEX5fk7uLZr9LHK9AW9KF2wU///BUfaOnlREfyrK/rv6Hyn3ISkAAAEAAwAIAAoADQAH//8AD3gBhXwHfFRV1vg5974yvZdMQspkSIYkQkgmhdAyIIQQWsSADCLSpajUiMgiAkuJNGmhKyJGDCyybCiyiGBHRGQtyLIuf2UX19UPy7oWyFz+972ZBxOE72N+L2+Yd+be0+5p99wBAscBBIN4ACjI4D4oUJEIVAbIL8wPYX4oP1TQ3um3+0v5dZz2bj44nsyKLhYPXKkaL1wCAhuuXcQ69dsWyAu7qF5PBMFqQzQRkzQgYvIQCuXleXYHlCXl2x1YZg+F7HxMDNAQLQoVetwuKZCZjRUTQqc/f7RjebisqAeuEQJXmpZUdA/3KgcgsJA2kL1xDNPDZqCyQAWdXiIy5YOHThUq4/KB1XFpgPr5heVtJuSQvJzxOeKB6HfEplzKWCEA4Sc+Vgqkw8bwIF16K7fg0ttNJr3DajEKBqfT5UlNkwXJKyD4hCRRlFySwU+TvTTJkJTh1wkms6l/pBWa08Fmt/WP+Nz2AWYcYEez3WwXvU5qECE/VB5ylJXl5993Hyc3zw6hkHaPoerldxVjh7eMX/F3hYWxu0KF382pcKpXsV+9QlS93Mj/Sz/ujinsVE1dDTszcEk1u4LpPdjXmDdw6UAsqFlUg7rmf2J+d3aGLmC757GBuEe55mHNXGxifZVrLtuNNUBhwbU6wSQ5IAOyoS2MCxcH7VmpXkHIdZlFP4BPtOvFdvlZZsncL0Kl1pZcS99Iam5eK1erfhFvrkviL9HDKc5X6OV/ChUq7aGEvw5U6QuFVCbEhOSSZHegODM7WOzxhOzZ2cVFJaXFIbfHK2cH7WlELuK3EnR5vHZJEkzvHZw35S933n0ucur5ky/MO7SraN2mrVuqGiNPnIt+NnTy6HF4fMkfvf+6EEjfkpWPh7rtXrJgp+NAk9hzQScj6194/+yxlZE72Ow0KvcdloMLbPcBiDD+2jdSW/Ek6MENfk55AfQMtwabaPC0aZWZ2a6Nob1NKgxRc3qemb/aF0jtk3xZPtkpc4Xjr3KVXE7WDfpi+sfVJ1RotwUyJVFVbE4ZV3JUPi0pLsq++XMM4A9Vd+/YcXcVvrtx7bLN61av2oINVTU11dU1NVV4cuPaFRvXrV7xDGPNH6+heQJpbMQaHLiz8R9fXb5w8dLl5vO7XnzhD7uef37Xxa8u//3ipa9pxpUqrt5AYeq1b8QPxVNg5BQWw13h9k4PpEqB3Lx2eW0DlmxfqkdfUhoy9Y6EnNZgW0t7MZ/6smlubka+I0NfFckQoDwPkjih+d4yrpTleTdRqoinJE6Ts7AULcTt8mRxQbYjMeLcXMpYwucgMgaCkrrMn668Z97YBwZHJm/+/hnWZ/KwOzazl5c2DerS+o2Xth9eshXXd7jTu7NHHeb98+VHfqw/+z/Cmp5zhvSZe3e/kSOubt2EO3tExnWrrbsy/51x94+aWFa/84V1k/bfx2Z1fWE0+2It+2zfxGEfAaBiMbBctRiug0CpIBLFUpyK2R+OumYgYrZB+cZAdoT4+TfM0CpsksEggGCxGoNUsV4J5sVpc5SGJE6pwxvIJgM3r97+1Kq1S7et2UQKUI/v7znOCn/8jpW80ohvKaN24aOatFEFAx8XLFYDFYItR0UbkQMljuIiEgx5HMS0efW2pWtXPbVdGZb9yjruPIInv/sR3z/+EisAhMFkrmCRXGCB9uEUKgoomw16o95qEwxoJiaT2cDtl84CUP5G4XWJOTBmWLK8olOmNOjMKhUpWZWHK5LZgl9279229we2OBUX50kuVjv5QDo7PBwnsvrhWJF+YDIuVagZDxeFHOF1MEKbsBMEQS+KJjOVdXJ1BKw61EH+feqSTzTz3I7ZA3Zuv+whshy3sDFL2TjctJR6n2SDsfFJ3A0I5ewXfAgugw7s+0XQG0SAfFVWHOEsr6TyphSHW5NHFc9J6Wa+7B3Dfp42HguHAUINniPlZCpQ/l0CogDIrW/8u85iv7sGv8ZzGzYAxjwV/MCxTwobJQCTWU8HRPQeruaaXpRqestVdUOXso7dupeF7px4Z8+ed3arKFc44AIg51W9ch4kIIiUEocmSk4sBpCcj15oUDRJXYYExl37RmirrkIv55rLASYJJF+S3t0nopeptU+E+mLrLK+lPgQyid3mCBU6UP1rVz8R2n770zc/Xf7x8s/Nn9fvaFi3rmFHPfmMLWRP4lycho/jNPY4W82Os88wiJ34K4tdAIQjAOQkx8YArcM2PaAOjSZBL8uolzAJFFvGDXd8ej67P2AvKpUkOYghcnK7zl300RBcsExwzJ/hbrd7GuYBwhgAIYtbTx/3+d4klJ3gtKCQnGIz9InYZEzqG8EkjSzNavCB/cXYlcQshhyMsZrI6PYLWc3lOG/vlA4rHr/3uTFD3r38/r+3fMKOke9W4oJ9G566u7au84CpOz/ct5R99wF7W6dIYjjnawrHIAh3hlungFOWgXoyzVKbHOr1eD19Il6vISsrrU8kSzbY+0QMGpdjgYh60zDTHJKHoyP4404pw27zB4o1o62gq+BLL299am8j+zv774zj995/dgTOZsOfWr3rnTWPj2h8qGbo1/M//kYYvmxfms7TtPrM54E7ns4vwBw0rFy/aNJjRRVTet31OgCBPABhongUDOCAzuE0h6gnxChToCJ1ulB0iH0jeqvscFBZotflk+hMQ5oJDqhrC/l//FxmAUlGYeK5Z6Jl5MDec2yJQdc+l5ViNduL1avoZ805eGll04jy6COKheT8S+U6kQwdw+lW6nPpXF4qtEoBziwAye3mMnRLkqlPRLqZdQlsKxTcLghkqhzjrLL5M+WgUwldSkjbL1HPLrCf51d8MHbv66zu/mcGl5Kz0YNZ0+mcf759kbEB29qGGrZiYWop2b2R9fYqnKnlWOVzqXqgNfQIB5LtRr8fQLLT7CyT0ZLaL2K0WFzU5e0TcfmojkckcgvcyhJ4pNlr8Bd63VyEhIbiGhfIBFGTq8R9lqcWB2Dl1G79Rn/9i8n08OU3L/760UX2E369YuvqVUPrI9VryFR8CXc5V/rYefbW7svv/YNdxUHv/OnFVQ1V8yse2Dde0UcAIY/zU4L0sA1FEQg3jJT0jVAJFBlqbOOrALk1dCOmkuHNF+mpaKOYunHhldNAlZhEyFGpz4R20C+c47Vmu+6gqXo9lewuq5TfXrLnZORk9Ink5JjAlNwvYvJBoF8E5N8qd9nN3jrmj7mOx8OPLDXqolpgwv0zZkpuzaeTynf+vWjNvnr22b+bsfDJR7+e+cL6dQ1bXlu3CDvOWfHIMytnrhJPHt7x4L7eg/48+8C5U0euLuu/f8ozr1xteHTRssdGru8V3kwfeHTMsN937/zksLEzFdlO5NQpNsMLWdAtnJlizzQYAAQu26AljUvWZbEQlyuJi1Ymcr8Iaal2jjKNg5qJ9Ctqx02jMyDFKHJw8TpUIvjHKhXZQlZ0/Iwe1eO++6/RVHpg2mv/uPbBuguPMtfKLU+tuXfjkIFraEVzg2tlMuZg6O57/vXBP1C3kZ3H9od2PPV81RMVE/aNAy3HEcaokRS34Ta+LAA8XotzQMRiizkRDVfN87X0JXae6NzkVR6Znehb6J8XL+Y3IKovXMjn0oEDMrkmmc2iXu9yGm0DIkab6hgTZklwj/T6FDccpXsmn6Rjlxv+knyrTFMR8+U/cF9+DiRwh/UCiChwdeXD58cDhSwsRjeikNNcTo83/0AtP2DDKLywji1nhxSezMTjgo9eVHOy3LBbJgIQ0OsEsToiIFRHrIjI4wHOlfxEz6a4ZOTXTLq9eTjdTofW1bEH6up+g5GIBDhGEr2BkRNVlMZTa/P3HKVyrMMKrF3H/KPYUAWjlGsXaRnXrxTIhrJwqp/bMtnphFYWIdgGoLWtddqASGuPzdA7YhNaqFZLvVJSEa48LZwUd4YSN4mJ+aq/ctSSXgtmD6gf2emV91/9KNj38bHd9l3PX0tq19dMnzFw3OSsgsWjj+zqPXn0w4On3e9nZ+NJLYFZ1yqkQ2ITFEM5zzwyA+1KLJ1kVwpAjsvSTgx3S+rQQeiisxv5Ky+9kGbnqUmllmSFEhOP6/G4ug6C2nJQUPdSt0td36R1IFMgbsUalrqlQAbw4KK1v1BwIH/udKqm8NCQbeMHP2LUtVk3rv7Fb4712N3Tt/DeaWvZt3+8wA7swe6Y/5cvjv3I1rHJn+AyhLM44ODVn14/7bBUDpq/hpxb8c388XfdM+rU3veu+Tws17Pv7O79aFvzMnvxc3aaHRq8sAZX4jgUsP7CfvYntoNhGYquJiAAAKJNPAIyWLjk0ojFqENR0SwqyILNaiG9I0bRYhFECoKD518xh6iplZYz+5W8H0OIlBsz/tURB6IHmnaT7itJORvb6A94cnbjGZYvHrnSg0zENwfPGTGddQIKJwCEo9xyW8ALGdA7nO0UUg1Wn89iEGQLjwd01iRrUlXEarWAxVcVsTjAWxUBevt4QnM9/gxBMbluwe4SAjxpj/mcgN0ef3cCt2IAhVVLsR/7+TIjjZjU9PTeY1ew4I9/Ovhn8cCeI/Nf9BnK2Pk3/kZ7TF00+6HoquhndauXPAGAMIdb09Oqr8gOu6jFpbdQb5IDekccglHi/HK2DL+4emRymUNIE3+Ro3WokKfbtNP37Cs0/7rxjQ0X2Cvs2Rex/NNLuysbxBB7lX3FPmdvl64rwyU44QusOVSzuj8AUTgmDuEc04FdsYcWQQ8COJyiuSoiUsFSFREct4ppwc9rSBlA+ZuAPZTBx2Az2Uo2CY/hIHysic/1z59PI/dU5CtWz+aJB9gi9gKmYebVKZgHgMq89Bc+r1GJWSSDAQXQoWAyS/reEUlCQsTeEUKRr3B03DZmUZBwxy/6S/MZmh+dTYZHt5OF4oH1LKc+eilhJj0UhpMlAKQ6pAbjTRPxSW45Q0CbAac3asPzwaNfrY9LTuyi2ilOhUvnI8SSohNapUJK7wiAaDLZe0dMgujtHRGdt4+8/HaphRyV9+rq5lT1xe9nfPc0a2IrDuKQL//9bve3DrL/so/Qj0kbVrGXCYuWZWXjUhzzD7xn/+D6GvYau8Q+Ze8H8LUY7WK6yuVQ2KdHBJ0giCCaTTraO6LTiQaJoshJV81RgnG/Qbydi5f/DYnpjc2ssZGSRrI3Ws1z7dXkYQC8NoLNxfFqVpwaNht1OotVT4GzFDJj9GrpGI15+JJiPpxLMg0v6dVv9AONx9jclFWuR6fyFGvI0TNxvRC+UjHmnkjBViRGg4Ix0Yn6RGzLWkgJZRVRDKHw1TvRrzc2NpL1J6JN5M0l0dc5snnk4+jCBF0QIT1soQCCJCMFzgtw3EBXxTekkO0+0aio0pV/bIp9V+KIgpPrUZJOFCUev/JSmsuNBjuVjDK1gKQgp2DnLbuZlRjwuJUAn2MY4nce4COtZjadZSsCntbhh6zRomMm0bbpo+bh4oGrVQLPOume7Uev/BCXo1IDsUG7sFsvcaytVpDB7jBS2aqjKCdypaUI4xPzabNJKZdj+WvNn+tsW4/RVB2xkGeEk582NR/nE3ZMwaxy2guAqFp99FZ5bu+IXqDW3hHqvLVNiOltBiTmueJRtpW9oZgjHIE9sBOOujo9+v1/fvn5h/9Eeb77LHuYa+94HIt1bArbxs6yU1iIuRjEAnYqZp+E8erqdUBRONnA+c75DE6XQaiKGAySLDuqIjKVEtavhpXmSgW/mlplYChutYXx7Ay7tLsRZ5PWUePGL949euKoYPr7t1HOh2jK6mdXrVC5wHaoXLBCCp+Zp8MeAIEa+OqmZtns6x0xC7KTL2yZM+MtlRs3J6I2pViG8q258sX7OOxndrH0tpz5ki3rzuqxivyf/DnN+WMCN1SGs8yIxKS3y0aDQdYTwePVm8EMVRGzmVDK5UepkSi6cntnp2Ku8ktw20SOf5bGNm4BcRXyGdhfcfkJ9jQ7/VXTzl2vfEZGRLeJB94/zf4+LjqZjFi9cuWqJwDVHIFw29ha4V6a0wSQ5BSFrGxTGvV4uH30CFSfoEoJiY4mt0CGlozy8D+o5jgx+6jmBbwy4BEI+9d3rHnZ0I/GN+7usnL1ey+xM389WLx/1+INHRbWXfoDLjz+6Z07su+YN73vyIFFvd959sV3qtf2nfFA35F3FQw8AoDgABCGcv7JvJ7iABSRUp1epgK3CYLmFeJ5qGYSi7k3IEsbWYFQyQrE9PWqJzjM14yPj2OHrLDdhgYZZafDrqOCmQ8UpzGUuFzsLkUnVHMYs4uij/2F/cJfFxrfee3ld8QDzf2vsC8wo5nuaa44+Mabh+ghQAAA4XW1/pMcNqJgMuooCJQqiPLlrxWvQhjgF8//SgXTwej3O6M/NmF1x8zWHdVaFh/5uU3bnwXkmg1yXz6aT6km+QwpyW6LRdQn2Q0U9TGTotqUGOKqNclWAjJldKcyenwSZ0h8cyc75y5CT3v2xU42u+nL9p6UYpSa0Nne7yy+1EQ/7PaW6/dbm0N88llHNx18ic5qnrv59RXv0YUK93QAQr1q9QNhhyCJ3ORLiskXFJMvtDT5KhocAz63Yu7rj/PIY0oTXmKdjuAkfHg/60QWROeQZnI4+gq5M9oX4lybrUY5GWGrIBJRpnoDiChTUeOcJmE+qKL+GCJdcNEhlrSb+Q6T8+R887zoCZJPFyv1ZQBBscZ6pWKmQyqDLKBgMIoCNwcUdUrMcuuKmVot8AvlzU6qi9roq82/0LSFwoaNC69OAIQGdoRMVnSRY2mRUFAYoxcJlTDIOdBSfeJRD5nMSvEEu4B+dkS6svyKX6HWC0A+i1c2Kd5c2XRy3h0mgYbo/4spg/KNEDuCzdrMFFACSacHOUgFevPMXj5rMb9CfMoLfOrSA+KF5b9KyigFJCgExOMgQVJYD1TWiQQEwrO+G5rpVFUTC3DfaPxsA1vG9pEg3dQ8jnwV9QJea2Zv0k3XKtUKsJLHIlEqwBgjmU/LQUfRp9mbCwCxTjhHHZIf9OA8AILRID2BkJ+s1ZoxwDW1OMStBHU83G1fm5MZ0+4QzhUdK3f33F8MRKk50lPCUEXzoVc4K1NnTEvz+Rw6yqMpYkzrFSFGI7jd1ooIt4LJFRHRA24o/98LVH4tX7NllapJZ7zS6LZn8QVeLKsVKjrQrxv43GPPvUychyc/VveH0F3HR77xCrNs/mPDWy89tOWB3js3Y1+b1GPe7Jq5dxTuORZ11TZuHC3LD00fOhwI7OVWtVZygRPSeVUt0+D1Wq2mVGqiGX4zmNwOu8HOhccRljzgqoiArYV5DSXF1SDB1sddEk825YBijeRQiVcrvHAqyJ5Pv/3+k0l/7GwKzGzQ6Wa811i/qXFjfb0wlJ1jP/DXxwMGLpdcbNHcsTuWvv7ll29fOPPJXwAQpnMOLxWGxbIaK6VuPU3ySmaOmQ0cHDPPzVmNGM9qlJ1DHgNzu6hmOGTcZXYV9f8d8HTbUOn8QrbvuW11Tz3swiw0oRPvyPQu96Sywe9+2mlNGRBlVqGU88fB+dM97E+VvGCx2CV7ht/htgIgmqhez9mjt1FnRYR6bscerSYTkLTqvTcUDPLPA6osi+JOiG7ST//n2W+/++TCTLMsNCxmTzdu3Ny4evOmNS9gNlr5647tA/rh0V+/mfny+4Gv3r54+i+fxLF0cN44IRk6hdOTDF4jpdzqtkrxGit4uRskyaUyyqIw6paZQyiRZQ632++JsUuivNbh53Kb+x/2JYp/e/+7qFl8eecf/zBk65bfb7WQLstc2AZl1GMH9v3fJxx/p2pttp/+c/eGrS8oUksFoBYpHVxK3cVlMjkJ4UaSuj0GvhQMgKIsVkScspUqq0GtY98IAxWmOZS1p2QNgeJSXkPW3DX3mE+zrxreeANH3lObN6LH8KHopW83l9G3+3TugmsDC9PnPNkLgEKQuYQCzplcKIVu8HC4a56vQ5YpvYtY4ESnSHIzW6Vn+Qzd72xlLbYWV0R0nXpFDJm6XKvOqvPk5pJekVxrm/JekTY2T7teEU9KnHUa+zj/8pXd+rzbxD1uragaVBdAqDC+jaAUkrJv/OXKcGMXmJOnbhQXF/F3QsHJVnf87VhB3sSqoa/te5X9jf3r7FdPzMgtC/ccNOnTtwb3ZPb6ZWdOPLzh7amPD50/4z8/1T4uVE5ICkzt9ewxXYdBbfPqVx54ddvqMauTndXFnYfmBnY+2PS66ypEhs2ZFOn5IO08/ZFvfn4cEPYCCD24nnuUzM5i0nFz7dF7vEkWvcMhVEQcNgOA3q0Y7xjlCatesVT2mALbtRUfM1P06cfm/+GZhgadoWD/jBMnyJuLfn/kk+jrfHXnDOow4N5XP4gWAxDYDoDjxAtAwcr9tZ3PJCDa7Ga5MmImVlQ04/3EwqZSIqAJJVQc3NDQ1CG3TceObXI7CJWYU1Zc0qFDaSkAubaKudSxTZAEd4Q9TqPRrNP5kj22yognrLcC1z6ISzW5xSTOhATTljhb3v2det7Zv/eNGZnLt9g16B6h+aqNHZHv0yaP8TSV89QGJTzetxgMRqNOEkSdYHeYAGw2nY7KRje1xiKGfD5zeUyFyuJsRTUiQi0bdclYkzcER73JeuD5E2zOnB07dKSgy2icydpGlxLpQTZOcjW/XTo9NjcO5nNT4GQCoiASQHfca2tMVBjHYVRo6SRfJQGoCAfcdruDiz+gdwRo66xWHrfb4RPMPm5p0302p1UPDkUPuCLEt534Igi1bHVIVIgEzfAqepHh1bRDypryyOa1DVNmblnVsDhFl79rIuIAXcHhmYdfJicWLNj3cnSLcv/zx9HjQmV99dDDg8e8+heuMZq2cnxdUBBOApeiri69x23S22xcWW02g/V2ytpSV72Jmrp7m4JG6NDUt95RNPXwJ+q8d0XUSWM2dhSfU9EknsU6wSyDnOwzeLgds1GbYvxvmcVylSHFilGFxE4PYRT74fKaf/wOTZcvobX5lZ3PPffii88/10Cy2I/swyeR/AFNmMfeZ1f/8rfzH545p1j5vdyW1apU+6E8nOEzCrKsS3foHJkBwQhWq7siYrXprboUaHXDzMdZ0GLBqpaeO2hPAhMUr62Y+gRHrThpU8Niry7c+PBf/+f7yzvryabGFc8+6xowcMRg1kUqqh9azT5h/1GcNr14+GTWl29fevfUeYVXHNNSlVexqMKW6qHJyT6bL8OfnOK1pqalecxOp8wtv80MFRHz/+Y2VT5yJ1l63Ul6r3vQ0njtQyL9GzaIW15cvXnjnI8uf/fJ57P0SQsajObpM/d9mHXp3YunT59birloRDO2a6z/9T38eEzFCzE9okGOpw1ywy6zXm8wEF4DsZrB4FYtg03rc2nRkaE5IY15ZEfvjt4eRQtfaahz6rrsFoaZNlk/fTbaJFSenDQjlrnS6XyW1twOtIplrqLzeuZaEfHYJKq/rj/5t8pdueG5kbsG25Hfpq50+j/e/+tjA/bXzF82+dmN88r/evSPL3Z6ftEjj7Yds+J13jSzsaHnpjbt7h4Uvrdr2aAH+yzaXLm4R1W3O7p2KO71FCCkX/uG7BQrwKPWJlwu3jPioEKS1+C0OXtFLGGbVeaCkj1xU3kqIVjV5ONWqo52xVGXhtxKNuHyEMcdA5NSJuSy17ZurRiBXdlrw2vN8lyzHQeQZdU9/83mRWePngiAsIOvrjKhElx8fh86ZZPJ4DS4PSaz2aZzWdVV7TFqEbMS/4daVmW0rJcrhBY127EvX9TPNNQl6UP7Z7zztlAZLeMO6GMSvnpozV2Dj54hp7RcjgiVau+HAQ0ms6hHK6jhiJZl+NX0NFTicIYQt7ER+76ptuiMte/tYyP4oI/8o0cx9iPtrx6K5UpSgI/Winsblz4lNc3rsZipYBZ0yQ7ubnTuxCyYK7c2A1U2Z2Rlk8LhUHSq1BmbsoRPKeSfcBbp2qSdPsY+3jNxsk5nLHCcaHqjg0snBF7dzc6QBZ3OvHR/dK5QyUaz6j5l+4tJbXTp7trW9eRvHClACAIIOpXGzLBdFiVAUWlxQZ3RLaD1pnQ4ngmjmhUfYgteQT9m/JktwFVH2Cn27hFSQLxsGO6IfhU9jUdYD0AgfL1LfHw3z/sVMqnHK5jB7OBLO0UHfIJCVam1GRJo46KKOdrSUrLvuwFOnfnuS/tYTsWfl/StKu2xq3cXzuCVn9wf+pn87mrGy5vtC03HtkAsZ6YPCZW3yJl7RUQr6npF0P2/5cz0oeZ/ksHR0+TL6D5y31Q6eN685sPxrixetlPl5/YlJxu9AFbZRbmnpqlpTq09K3F7TdV/bpXcPJZTfEtxCddDvj7d3EK4ZLfHjedrpx794PFH58/49MClCxdM44aRZaRxE+aPjywnw0Zg4ebdS6Xj7NzZoCl4FhAvMxuZrfluorSo0RSABN+tlHzx8nKeJv3cDAiV7Ijaw5Oq4OwWDQ4H8UFqqsXiE2laujso0QScEzYFFXSDxYr7U7DPVNCV5Dj2pcRw4eKhDx+Z/9jjp45OnvHwVFIePIvB49LSPRvZ+yPvJcsjvOq5cRenZNg4zJn2qEvdpyXVQg6tAS/XAzu1JvkcpuoIdVglCaojEuTngS3pjfw38rSkOlOZT8nQVNOmbD9lKoU5HFg8t2TMUz2mRrqPyi95omTcisrHK/sMJSfuLFn/UKvsVinhsvqH/RkZSeoOPFuKdcJwrcuYCALV8343AGpSu4xtNPOWXcZcCQNO1/Xt0PNKk/Gszp3Ly0IVZPfVC2Lfxb3C5ZVhQDjK7fd5dVemazjNozNTahCARxo62irVJxKnwUz4SzDKgg+07k9ljt9sw2apra1KOJCldLR6NAOuqD89OWHNwpPHcdniPisKChY+tHv7My8sX/FdifTO+xlov4LNXXfvoH7vstCH5z462QkQypUYSDzBpV4Zzk5y6s3mZI+dGD1OMS3dlORL6h/R+3xOcNr6RpxJIPa5uRWkRdPQzZ6Nm29lf5Lfinl2ypuduEqQxqONXTatnD0HG9jQblU05erVU2+99f/EEzUL+/1uGTs397MxS+7YtDz/xwtzsfO+U4psZqMkeIVtnHNByAibW0GmBSxtctLd7iwZeNSYn1gJchaVBku9il8r9co82Ja9clCxDnKwNLs0IXQ6VLV4+OLx8+eOq7t/UVXVgmF14+YuGrN42MKqeVtnzHh627QZW8mHj01aNmxh794Lhz059ZEFD/CHvfj7JZN+N2XbM1Onbd8BiscDEJT9Fw8MDrdzWGSj0WYS9URPTS6LW/YmGSwW2So5HBScbqsz3UmsTqvThG7JlATlWg+33RHrzL7lpjuGUOGj1uaovjBEKnH2HjYCJfY6dmGv72BvYGd+ARu7j1wgZ5vZ3Ma57Ec08RslQBKsgaxUVYkkUR726QUqUDlmFjgmiYqtbgjFLYRiI5p/YebmnxVpXPuF1kupUABdeGdcdiE4pdy0Dj5fmkmCgNS13E07lbRqK/n1/mCviN+tt/WK6OGGznh/s4t9I39VVFmLztSUlwuwZdCiRC2l/Kk33lG0dHD/qprTbw5/ZmTxqMV9Z8yYvelw/cCqjf/+6K9P9H9t4KLl7R+cvmJR99W/f6Ggbs3LPQbRnMF1WW0mD5q1NDW4IJjSKdy5prTH+klDl+fctXrZxm5rs9r27dWuY8e8oqHTRvWb0MVZPfnuKWXOMUCwWLTQ8eKH6u5TWpiTanKAI8lnpW495N90QCAhzctKeI/FxVnZpaXZWcU4pzgrq7Q0K6tYnFrUrl1RYUFBYfwOQGEM7xzvEdt5hxKeSwWDXmrNT0936a1esbSDZAKH1ZRuIuCwOYjJYXKk5AWcoRQByhNPBdhblgFRMxHuG90bnN2obu8KDjc3eYHM1py5DiFU2NqhNXTQOXMWz10weE77sRWvffDZq0880vHB5vXv4PB3les1tv2D02z76xP2YNvdezD3pT3s7N497JOXhMCeTTu3t/2dq9X3n575qfMjIXZI/Q7b/u6brOGD0zj0rT+wD/+wB3P2xr8GQKCCushU8W1OdzqUhlt5pRQDokeJazP8rQwGh88D1EYJNTvSOakf3feGku9qVGpqG4xTV8ojfbXWGSt18iYUtdZJXEnDlt0/edPztWvHjM+btnB+HauecmLUlAeov2bk6HHjJkhCcGFoRIcJs1jnI2OaCgRBqd8NhFraSI+CBGbICTupxI21YNTrBbMkWKwmUYegHGS5WbPRiyhjVuw2EAfPVEriM1kjLsUhtexzTK9lO0kQ1/dk29mzvXB9yo23qh9EHfeDXhAhJWwiKKAki0J1RCSQr20nattixUJOXfM71Bv9Hhc+CdeuaV3LRAIbAAjXdUoX16r7wqGgF3iOLui5Zpn1JodXKu1gsnFoi9Pi0DmtjnQHAR63E4fT4bythikCCP22ZKVVoUS+hp0Bqm51Fnr+L2UjHz5YPXLwfRNx36B+l3eeXrwWxYbNVy/8n+pGrtwd7tNtSfXsNFaLo9jTdPZ89ub/pXB47YrkEiRpzW3r+oJ09UfBJLnmAoG5dBi5LJ5U83Z/2GIGp7L7nGwzHPNQhS3J7yWaAKe27LkytvA6c/fPn39g4Oqa+fun195VPX3qwLunC2vmH9i/oGZlTdOCgdOm3l0zdZoiv/GASic8yQYLAMhwBiA6Q93NqCLLub9OUmpcstOLaHGCwAsItnQvZqjyadHEUVx6cz+0JMt+sjy645vIQH91edGont0XbPj9msiaPXiIVI2/NHhk35IePbMLh0yeP6V6/ZPPA4KflKlzBqAsnGkVRaCONIPUOstxn/MhJ+nrRKMzxUmcTl2yP92s88eVhKvIfTe2KDHRmKtlyd/2PpPpA3vsPbRzw4w1sz/8snbmA6Or7+w+pUPP8mXDl2wVvqx+wJu//YmVHWb32L5q0oAeXXrkBYa2LZl5056LnkfvwhP6xD0X5YAIN3pyAOvaT85494494cnCD133dnN3O1oEqNZDegiV4IHicLJoMOhs4HS6dC6+LeC2ulLMRKks6LWkMWHX6XqfaELKyMnTOhsGs13PNCxJNkz+Z/0Qg6GhAeewK698pKaNLwyr2caOScrsU1mzMEJygRWCYYcgIoBopDa7TidSq4jaQa/8RJkG7MortqVTEvILI6Z9PL1rzacn//ov0pY1S3t/raYhx5WrKDBA2ED6Yh0dqvitsEECMJuofkCEQsyAJOqq2jzatUOseZR82L1nz+7xMwlZzIVNAOBQIge7xQhgUfrILXa7jtog/71CzQq3qDNoZYbSkOzBpo31obZtOw24a8BDQx4ubWIXRk7UT9S1Kckrtu+bHgSEvqQKP1d3kPleHwFKDSZuX2mGBGlK3sc5EGO7FpnEzw8MXLlQ8pQsvpNv4K4ld9471NP2/hFAoDt1kaPi26q3zgo7lONnEnBvHfMfbr3iP964r4XTTjgzJSYsWHJ0V/3qF3eu3/B8lN07fsKwYRMeGCZM3nHw8LPP7T+w/TH+b/YjjwCBau4hdsY9BF+ZRr1AgMrEoJdu5R/4fBhELEUxdqM72c5aTGef1+IQVnvjPTGxCb3wfhzek01IufGW24c+AOIZzq8gnCYLACAbHrsGKMNHNDV6EPR/osTBA8ziYuCw7Tjs+ThseQz2CwV2Ou3PYeV9xMZBVchkAMkvnuAQM34FFf4CxEZ9KD5qXmxUIBBiM2mNMBxSoY3Sba1zpQWwlbVVwCXk5EIqmmhqKj93lzEgkm2zG3tH7IEWecP9w+9rGZ4ohslCYnXDUm9MGF2J0ihbnJBfkf59Rs7q4vv9Y9X1ozq9+dbRTwPhSMnYbk2zOnXtXqqkXKHH1tZM7NOvw5ip2e0XjzjcWDEhMjB/yIz70jFvcU/eGRvmVKrdoPJ0bltbq9R1v/YaDgTdn4hNzIa84ltA1MLCGETS7SCOQSAGkdoSIv86xGsg3HKMrOsQE6CUQxiaKGmtgtyAkWIwIMNxKIN5QK4xAIk3MIIVnNA/fAdPM+wIOhPaRNEtuvROycm7kHm7iMHM7wabASUqOtByowkglmHm5an5G8bOiYau9y/SAF7vYVQ2zqR5UUeUXdxLDtMT0SMkNXqR9Lhag0cfURpetbZG/AvZr2jRHOZSOkc5ztkqzrMIAf55rM9N5VmbON8PqhxBs8aRmyFqoTwG4b4dxLFrV2MQyS0hsq5DTACHylWC/hhXgUA+gFip9id54Z5wod3t1glmAKcgCUk+rogS11erXC6/JJ+WL8jcIsuyoNfbqiJ6Kri17tNEXW55EDWhHZV7uVhLarxnM5QhVqpNqbM3bcJ9eBf+bn/07S9xNlt4lIyKtaWSunqyntWxHSQcba5nhhhNYrmqS+3jurSmJdWx7jiVLwUx3sKsmLb5bgdRi4YYhP92EMegKQaR3RIiX4PgeGy65RhZ1yEmwMdxnW4b5z7CQrQJJmEDGMEX1st6ino0mXXgy0+0x2rMHLeOu0ewbTh8BHua7RiLw9m2MThS2DCa/3fbaLyfPTsaR+CIsWwrAOXzv877434CJ6RAQFkZnnRvmsAPExtcAA6rqFMCF0+a32f2945YHTpRoDazQHnjnES1lrm3+Fq4+YgL/ygm0lglwc7fxSoM1BZEj3qKzovZ1zsLv1479tEH9ykddGe2jnx04rGmh6Mjpu/9zy/NwbFk68SdWpPhmOUDNr2FDyl9dMMXV699l61D26bmvgOVZjp2ZRN9qTc7xVdOrI9LlUxpXLoVMfk7Nb7fDFELp2MQKbeDOAZzYhAZLSGyrkNMgA3xlRNMtEfCbHWUTvF5CmKjOFSQeO/frHjvH9+pMOtFUbKDBB6vWeALiC8fs96sl2LdkZoVarkRrHVH8v9lCDcaJGexM+zzQ42NZ9GHnuYrO3mL5LvvUdvFy4zXWq/B6ei/V+5Y9yQAqv0oW6R0aK94ppxcMTUAXpMJUu25YkGhw5Hbrl12RaQd5LrV3S5tj+vm0xpaZCBL2vZIQjWCo6Q2/2lnOTKUqE/1UYJv5ZAOKb36Lxv32p+OTCrfUnn27ofnjujZq094yVz2TcPf/v7+58IPi6dX3OnPyC0L3b917LZdPTcF8w/0mVQxcHZN+cTisqHF1YMuXO0r7Nv3562c52pXkOTnPL8TACXovgLUVWlXOH6L57V56vN2t3t+7FP1eajFc/Gz689fe+UW3xc/vP58whegruiOKsCNGRZehzj+cwyiTQwCqAIhKbtXOVDENWdkOJQLre3tedlIaF+WlJTe3ghi5y4pbYNtKyK+AqGgV6RD66BdECyZQU+xzqKriLgsNtBaO9R97viBxZsNL1corarUot3Jy/+qHSkOv7bLFExMz5TiAMaaVIb/wg7NmPnUc0VVb4+a/3xO8a6Hj/0reqcOO967tWbwurHswpy73lz03Mt7Jg1ZtfPpwzvoK7OWGon8BOY/+yddrEUqp/ie+4eMYP/9+yRWGwjyVpav5k5sXH9/5MVNo2XdQ6Sw4ektO5V1zXc4lW4kzreeMU+JFaqnVDtxVIn1ikl8vyqRVppEbn5e21993vp2z4/9rD7PafGcS1R7PsEQk1d7TaLX/gqAo9URXolZHHYXKGOgqI3xIgApTICovZYRgzDHIa79iUMMSoA4xl6IQTg0iG84RDrHQ4OYwA4CqBbHZ9d89VRlx1zyq6euqsJ5fsnUqhXwYN5jsTttkj7YRp9eETFSj91nsfLIR0+9LqSttY3QmLJw6/3b430QyITiIlAqxdlBMcj/lHpUk+6gRVqnV4kwil39+e/sK5T/9sUYXdkp9n3vr4YN77ll3OW+pzc8v7NpC3vppe0vPUtC7Ev2FzR/cQmlWcInr25+cGHXgtrefZ6cNHMlm8b+taaRbXjh4Aku21jXgbraqmOrzaLyJC1RNqNUrt0Vk/1HquySb/e8drD6PPN2z4+p45Ngi+d8fu35a9/f4vtcJtrzCSkx3Wh3fS2Ph2YhR9gJVO1CD4WTPAaDTSACKjsZTifKZjMqJ/QQ8tX1yhOfG8nPjUN6iccXE96Pp8ejezqVFHXsFCrqot3J8iefZP/q3KW8Y1m4nPwYfwOUY3tEGCUsjvv7PvxEa3orl8vQ6iZn76u47uxt1M+b2Kjnf3P2ZWVxBdGcfXw7QXSpTl4Si1SnX6L2X2yaUjNt+Dw0Xd40o6Z25NzmV4rxTJ9pvAljfYjl95r63Iuxboyetf0XbEBQGjL6zuy7cMOvu8aRRcWffLRjTHRO6DzXjNjutSq5e2KSf0PVDI8mmZuf107VNOfWz4851OeBFs+5ZLXnE/yxtZarrfrYDqw6wr2xGWIjpKsAWu+I2t+VyXex0jOkFJfNZpfsrQMOsKeYPHqqT+NdjB7q5euvRZPnb3oYUWsXUUomXo/W9JUVbx7J4HugOKR748Sz333/yd8fMwk63mSElTs38OYRzF9LmyID2Efsvwpjn83sV86KdcDaFQ1NOXQi58u3ce/ZMxo1nF6Nmgn7Y/TmxejV+puEyuv9TaJArLfsb+Iw6gkU6UvxFLggHe4Ot0uSrE5nKpjtqZKY4bc6eDxpBaOR51hGGj+Vwg8UUAc4b5zk4det2ia1fWVJO2TlvZF9aafq7NnSl1EYN4y9zJ7BYRgeN5RaonxdR8+Rfs09fmXXEH+ecs89LqzDiTgeF3ljSZmwlZ1m55QTGn6hNi32qy1yujAU0iAXCmBQuG26zkI8nqx8t7tVlk4oDOW1Mbbh0RHvSCKixdiunWg32pIyxcyKCIieFj7YoVjVRAeseV9R9a0q5rdyvYktTFkxnyvWs/Nzup6pu8B+ROnrBae6djz2+InL0aAOq4Y/e8+QDVf9G154buPm5xvWCb3mrjKRjN+7vp4xEwtQh3q8Y+a0KbPYz19MYDO5tw1mkLIPz3985rOPP/10x9NP7wBEE68Q7pH8YFF6wGWwWXmN0KJs3CSfKkwsE/Igzx1QzhIE0DR3nLfB89CcmUMWLuFF2u+WPJGTu3C+t3TBoiIAgpP5iG2lhdp+kEMyxSpMejflw753u9KSrHUfcfpp29njxj46a8zY3z3YPRTq3rmsqJu4b9TM2lGjps8c3qFLlw78AkQdn+k78TN1N5wPn+Szg2gC/nKrZc73En4mKLYb3o4vKU6BwvQ0olRTQpJEXXkDB/TOLAxZRpmn39tucP/KjIL21tHmqcL5rLZZnbvMquO3Tl1n1aldEci5Ff/FEyCCePMvngykw+K/eMIh5f8VUtYgffQ49lB7+R0HUNTpQenhP6WBBkscHEs5y+QZ1WF29yx63DMUTVyicNM3RdTpRZly061Rq55Od5RisXIk/bGKDPGARzmLjqmfcouq/e4LkcAKAEQZizSpY1khOWwS0KwXbHbQUZP2M1+x3pUgbyrhA/vjeGG9tcNjs9M6maNnb2B4FnXTeR1Tw7TF6DZldL0ZRcHuMIs2WRn9LW10DWe/ei9JQJ4ELUkjOsxJ7m6+QYbnXvbTY2Ow6D6FHh/7lTTBZZSVLOtqB8g4iCCHzeZK+dC1Y38ymWJ3vb5SBnteXszG7cAfyXB6EYzgPBD/URrIP3Wr6u+OqQ9OmDF94qRp5JtZj/9u9sx5C/icym8TiHvgB8gGOwAEwU4c/M4nELJA1RaoJelK5ZPTbBAIlYikk0WuCInpvPM3e2CJ+16ASv2UpGqjUBAIkMRRWhRNSeqtK6QAyGYBkJXxUyYgEkE7ZYLxAQJIVjbPWkkXx4+ZIJRzr1gnnuT0TQ2Xp3rTPZ5kI5Hl5NZ2wZDslYJtjN4kb/+ILklMTUvtHyFp1rT0tPw0qqdJaUlpzsxM6BvJlJ0W3iDhg5ZN3bwwdMsfKruRW2ZQbuRlt9evdcorVpPyolGwuJT/dUDsCHUKOz4AWfRHQvA065Z1snHLxtW7/oddaNewgZANO4LY+n9OPN+rQSxmD80rC7ed1/Rm9/puaEacl3tH9TwUsfXIpYPVzprl6o4iBXdYT0AUtDAtYc3y+EuJtrjkUwGEVlI650ylKvE+5ABA/HNTwuf9lc+BgItUcf0/AgZwQedwuks0ypTyaYjSqY+iqLe60l3E5aIWOZ1mxPuV70toergeGwR4g0v8V2eKi0otVJZJ05xV7GHcsHQO+0ESk9LSjDup6913x/KzVKdeX9THFGzb1v5TDDfpQ45bECoJ9+43cBcf0nCXXr/F8/43notvxJ6rVEnqc1TWG05X9cp+AAQRKWiHl2Knck80KgqljCAC4Aq1QvJpPHP6XaxCImp1FiUv6pwAUXstt2Ud9NrbHGJCAsQx9ufEKktsFtJBzroOMYF9EK/V+GK1mv8PflNJUQAAAAABAAAAARmahXJJOF8PPPUACQgAAAAAAMk1MYsAAAAAyehMTPua/dUJoghiAAAACQACAAAAAAAAeAFjYGRg4Oj9u4KBgXPN71n/qjkXAUVQwU0Ap6sHhAB4AW2SA6wYQRRF786+2d3atm3b9ldQ27atsG6D2mFt2zaC2ra2d/YbSU7u6C3OG7mIowAgGQFlKIBldiXM1CVQQRZiurMEffRtDLVOYqbqhBBSS/ohgnt9rG+ooxYiTOXDMvUBGbnWixwgPUgnUoLMJCOj5n1IP3Oe1ImajzZpD0YOtxzG6rSALoOzOiUm6ps4K8NJPs6vc/4cZ1UBv4u85FoRnHWr4azjkRqYKFej8hP3eqCfDER61uyT44DbBzlkBTwZD8h8/sMabOD3ZmFWkAiUs5f4f2SFNZfv6iTPscW+jOHynEzEcLULuaQbivCdW5SDNcrx50uFYLzFHYotZl1umvNM1tgNWX+V/3gdebi3ThTgVEMWKYci4kHZhxBie3TYx3rHbGr+Pdo7x4dIHTKe5DFn+O/j+W2VnE3ooW6isf0LIUENvZs1gf/LHojJwdpplCP5gn/5gi26FoYa19ZVFOJ6Sxuoz/q2Ti20IKVJdnqvYJwnhfPH/2f6YHoQF30aZaK9J8T026RxH5fA/WPW/8IW4zkpnIfoFLifGB86v0ffm5nbyRs5iaHR3hNBD0HSfTzoPugRM+hdN0x052KoHLBS0tdgpidAiEesDsgWYO73RWQz2LWIwjqnMe/uYISQtlbyf2NlT9Q9PoBcBnrO6I5ELoMeyHkNnIXGdv809H/DXNOTeAEc0jWMJFcQxvFnto/5LjEvHrdbmh2Kji9aPL4839TcKPNAa6mlZUyOmZk6lzbPJ3bo56//Cz+Vaqqrat5rY8x7xnzxl3nvo+27jFnz8c/mI9Nmh2XBdMsilrBitsnD9rI8aiN5DI/jSftC9mIf9pMfIB4kHiI+hWfQY5aPAYYYYYwpcyfpMMX0aZzBWZzDeVygchGXcBlX8ApexWt4HW/gLbzNbnfwLt7DJ/p0TX4+Uucji1hCnY/U+cijVB7D46jzkb3Yh/3kB4gHiYeIT+EZ9JjlY4AhRhhjytxJOkwxfRpncBbncB4XqFzEJVzGFbyCV/EaXscbeAtvs9sdvIv3cjmftWavuWs2mg6byt3ooIsFOyx77Kos2kiWsIK/UVPDOjawiQmO4CgdxnAcJzClz2PVbNKsy2ZzvoncjQ66qE2kNpHaRJawgr9RU8M6NrCJCY6gNpFjOI4TmNIn36TNfGSH5RrssKtyN+59b410iF0sUFO0l2UJtY/8jU9rWMcGNjHBEUypf0z8mm7vZLvZaC/LzdhmV2XBvpBF25IlLJOvEFfRI+NjgCFGGGNK5Rs6Z7Ij/45yNzro4m9Ywzo2sIkJjuBj2ZnvLDdjGxntLLWzLGGZfIW4ih4ZHwMMMcIYUyq1s8xkl97bH0y3JkZyM36j/+58rvTQxwBDjDDGNzyVyX35Ccjd6KCLv2EN69jAJiY4go/lfr05F+Ua7CCzGx10sYA9tiWLxCWs2BfyN+Ia1rGBTUxwBEfpMIbjOIEpfdjHvGaTd9LJb0duRp2S1O1I3Y4sYZl8hbiKHhkfAwwxwhhTKt/QOZPfmY3//Ss3Y5tNpTpL9ZQeGR8DDDHCGN/wbCbdfHO5GbW51OZSm8sSlslXiKvokfExwBAjjDGlUpvLTBY0K5KbiDcT672SbXZY6k7lbnTQxQI1h+1FeZTKY3gcT2KvTWUf9pMZIB4kHiI+xcQzxGfpfA7P4wW8yG4eT/kYYIgRxvgb9TWsYwObmOAITlI/xf7TOIOzOIfzuEDlIi7hMq7gFbyK1/A63sBbeJtvdwfv4j28zyaP8QmVL/imL/ENJ5PJHt3RqtyMbbYlPfQxwBAjjPEN9ZksqkMqN6PuV7bZy7LDtuRudNDFwzx1FI/hcTzJp73Yh/3kB4gHiYeIT+EZ9JjlY4AhRhjjb1TWsI4NbGKCIzjJlCmcxhmcxTmcxwVcxCVcxhW8glfxGl7HG3gLbzPxDt7Fe/gY/+egvq0YCAEoCNa1n+KVyTUl3Q0uIhoe+3DnRfV7nXGOc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4xznOMc5znGOc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4xznOMc5znGOc5zjHOc4xznOcY5znOM8XZouTZemS1OAKcAUYAowBZgCTAHm3x31O7p3vNf5c1iXeBkEAQDFcbsJX0IqFBwK7tyEgkPC3R0K7hrXzsIhePPK/7c77jPM1yxSPua0WmuDzNcuNmuLtmq7sbyfsUu7De/xu9fvvvDNfN3ioN9j5pq0ximd1hmd1TmlX7iky7qiq7qmG3pgXYd6pMd6oqd6pud6oZd6pdd6p/f6oI/6pC/KSxvf9F0/1LFl1naRcwwzrAu7AHNarbW6oEu6rCu6qmu6ob9Y7xu+kbfHH1ZopCk25RVrhXKn4LCO6KiOGfvpd+R3is15xXmVWKGRptgaysQKpUwc1hEdVcpEysTI7xTbKHMcKzTSFDtCmVihkab4z0FdI0QQBAEUbRz6XLh3Lc7VcI/WN54IuxXFS97oH58+MBoclE1usbHHW77wlW985wcHHHLEMSecsUuPXMNRqfzib3pcllj5xd+0lSVW5nNIL3nF6389h+Y5NG3Thja0oQ1taEMb2tCGNrQn+QwjrcwxM93gJre4Y89mvsdb3vGeD3zkE5/5wle+8Z0fHHDIEceccMaOX67wNz3747gObCQAQhCKdjlRzBVD5be7rwAmfOMQsUvPLj279OzSYBks49Ibl97In/HCuNDGO+NOW6qlWqqlWqqlWqqlWqqYUkwpphTzifnEfII92IM92IM92IM92IM92IM92I/D4/A4PA6Pw+PwODwOj8M/f7kaaDXQyt7K3mqglcCVwNVAq4FWA60GWglZCVkJWQlZCVkJWQlZDbQyqhpoNdAPh3NAwCAAwwDM+7b2sg8kCjIO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO47AO67AO67AO67AO67AO67AO67AO67AO67AO67AO67AO63AO53AO53AO53AO53AO53AO53AO53AO53AO53AO53AO5xCHOMQhDnGIQxziEIc4xCEOcYhDHOIQhzjEIQ5xiEMd6lCHOtShDnWoQx3qUIc61KEOdahDHepQhzrUoQ6/h+P6RpIjiKEoyOPvCARUoK9LctP5ZqXTop7q/6H/0H+4P9yfPz82bdm2Y9ee/T355bS3/divDW9reFtDb4beDL0ZejP0ZujN0JuhN0Nvht4MvRl6M/Rm6M3w1of3PVnJSlaykpWsZCUrWclKVrKSlaxkJStZySpWsYpVrGIVq1jFKlaxilWsYhWrWMUqVrGa1axmNatZzWpWs5rVrGY1q1nNalazmtWsYQ1rWMMa1rCGNaxhDWtYwxrWsIY1rGENa1nLWtaylrWsZS1rWcta1rKWtaxlLWtZyzrWsY51rGMd61jHOtaxjnWsYx3rWMc61rEeTf1o6kdTP/84rpMqCKAYhmH8Cfy2JjuLCPiYPDH1Y+rH1I+pH1M/pn5M/Zh6FEZhFEZhFEZhFEZhFEZhFFZhFVZhFVZhFVZhFVZhFVbhFE7hFE7hFE7hFE7hFE7hFCKgCChPHQFlc7I52ZxsTgQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQti5bl63L1mXrsnXZuggoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCyt5GQBFQBPTlwD7OEIaBKAxSOrmJVZa2TsJcwJ6r0/+9sBOGnTDshOF+DndyXG7k7vfh9+n35fft978Thp2wKuqqqKtarmq58cYbb7zzzjvvfPDBBx988sknn3zxxRdfPHnyVPip8FPhp8JPhZ8KP78czLdxBDAMAMFc/bdAk4AERoMS5CpQOW82uWyPHexkJzvZyU52spOd7GQnu9jFLnaxi13sYhe72MVudrOb3exmN7vZzW52s8EGG2ywwQYbbLDBBnvZy172spe97GUve9nLJptssskmm2yyySabbLHFFltsscUWW2yxxX6+7P+rH/qtf6+2Z3u2Z3u2Z3u2Z3u2Z3s+O66jKoYBGASA/iUFeLO2tqfgvhIgVkOshvj/8f/jF8VqiL8dqyG+d4klllhiiSWWWGKJJY444ogjjjjiiCOO+Pua0gPv7paRAHgBLcEDFOsGAADAurFtJw/bt23btm3btm3btm3btq27UCik/1sq1CH0I9wl/DTSONInsjxyKcpGc0VrRNtGx0dXRF/FpFiV2KbYl3j++Jz4vkTaxKjEgcSXpJzMm6yb3ALkAnoCV0ARLAcOBjdCAJQJqgWNhJZDT2EbbgTPhz8h+ZFJyDbkFSqgVdGh6Br0BhbFFCwHVhNrj43DXuH58V74WcIkahHvyDRkLXIGeY18SxWl+lMHaIVuSc+h3zHpmNbMJOYuy7DF2E7sFvYMJ3Clf+3DHecNvjm/m38g1BYmioxYS5wqbhZ3S0Wl2tJkab50U04pl5CHy9vlmwqlZFJaK4uVnco55YlaUK2kNla7qEPV6epi9aMW01jN0zJohbRZ2mptj3ZWu6e91wE9vT5LX63v0c/q9/UPRiZjprHS2GmcNG4ar8yIOcycZC4yN5mHzMvmE/OrhVq6NcCaYC2wNlgHrAvWQ/t/e6w9115r77XP2fecrE4xp65zwM3lNnZnuBfdZ17E071sXj6vrTfP2+Hd8F74lJ/eL+Hv86/6D/23Qfogf1A+qB10CAYGk4LFwdaf2C+JfQAAAAABAAAA3QCKABYAVgAFAAIAEAAvAFwAAAEOAPgAAwABeAFljgNuBEAUhr/ajBr3AHVY27btds0L7MH3Wysz897PZIAO7mihqbWLJoahiJvpl+Wxc4HRIm6tyrQxwkMRtzNIooj7uSDDMRE+Cdk859Ud50z+TZKAPMaqyjsm+HDGzI37GlqiNTu/tj7E00x5rrBBXDWMWdUJdMrtUveHhCfCHJOeNB4m9CK+d91PWZgY37oBfov/iTvjKgfsss4mR5w7x5kxPZUFNtEoQ3gBbMEDjJYBAADQ9/3nu2zbtm3b5p9t17JdQ7Zt21zmvGXXvJrZe0LA37Cw/3lDEBISIVKUaDFixYmXIJHEkkgqmeRSSCmV1NJIK530Msgok8yyyCqb7HLIKZfc8sgrn/wKKKiwIooqprgSSiqltDLKKqe8CiqqpLIqqqqmuhpqqqW2Ouqqp74GGmqksSaaaqa5FlpqpbU22mqnvQ466qSzLrrqprs9NpthprNWeWeWReZba6ctQYR5QaTplvvhp4VWm+Oyt75bZ5fffvljk71uum6fHnpaopfbervhlvfCHnngof36+Gappx57oq+PPpurv34GGGSgwTYYYpihhhthlJFGG+ODscYbZ4JJJjphoykmm2qaT7445ZkDDnrujRcOOeyY46444qirZtvtnPPOBFG+BtFBTBAbxAXxQYJC7rvjrnv/xpJXmpPDXpqXaWDg6MKZX5ZaVJycX5TK4lpalA8SdnMyMITSRjxp+aVFxaUFqUWZ+UVQQWMobcKUlgYAHQ14sAAAeAFNSzVaxFAQfhP9tprgntWkeR2PGvd1GRwqaiyhxd1bTpGXbm/BPdAbrFaMzy+T75H4YoxiYFN0UaWoDWhP2IGtZtNuNJMW0fS8E3XHLHJEiga66lFTq0cNtR5dXhLRpSbXJTpJB5U00XSrgOqEGqjqwvxA9GsekiJBw2KIekUPdQCSJZAQ86hE8QMVxDoqhgKMQDDaZ6csYH9Msxic9YIOVXgLK2XO01WzXkrLSGFTwp10yq05WdyQxp1ktLG5FgK8rF8/P7PpkbQcLa/J2Mh6Wu42D2sk7GXT657H+Y7nH/NW+Nzz+f9ov/07DXE7QQYAAA==) format("woff")}@font-face{font-family:"Open Sans";font-style:normal;font-weight:700;src:local("Open Sans Bold"),local("OpenSans-Bold"),url(data:font/woff;base64,d09GRgABAAAAAFIkABIAAAAAjFQAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABHREVGAAABlAAAABYAAAAWABAA3UdQT1MAAAGsAAAADAAAAAwAFQAKR1NVQgAAAbgAAABZAAAAdN3O3ptPUy8yAAACFAAAAGAAAABgonWhGGNtYXAAAAJ0AAAAmAAAAMyvDbOdY3Z0IAAAAwwAAABdAAAAqhMtGpRmcGdtAAADbAAABKQAAAfgu3OkdWdhc3AAAAgQAAAADAAAAAwACAAbZ2x5ZgAACBwAADiOAABYHAyUF61oZWFkAABArAAAADYAAAA29+HHDmhoZWEAAEDkAAAAHwAAACQOKQeIaG10eAAAQQQAAAICAAADbOuUTaVrZXJuAABDCAAAChcAAB6Qo+uk42xvY2EAAE0gAAABugAAAbyyH8b/bWF4cAAATtwAAAAgAAAAIAJoAh9uYW1lAABO/AAAALcAAAFcGJAzWHBvc3QAAE+0AAABhgAAAiiYDmoRcHJlcAAAUTwAAADnAAAA+MgJ/GsAAQAAAAwAAAAAAAAAAgABAAAA3AABAAAAAQAAAAoACgAKAAB4AR3HNcJBAQDA8d+rLzDatEXOrqDd4S2ayUX1beTyDwEyyrqCbXrY+xPD8ylAsF0tUn/4nlj89Z9A7+tETl5RXdNNZGDm+vXYXWjgLDRzEhoLBAYv0/0NHAAAAAADBQ8CvAAFAAgFmgUzAAABHwWaBTMAAAPRAGYB/AgCAgsIBgMFBAICBOAAAu9AACBbAAAAKAAAAAAxQVNDACAAIP/9Bh/+FACECI0CWCAAAZ8AAAAABF4FtgAAACAAA3gBY2BgYGRgBmIGBh4GFoYDQFqHQYGBBcjzYPBkqGM4zXCe4T+jIWMw0zGmW0x3FEQUpBTkFJQU1BSsFFwUShTWKAn9/w/UpQBU7cWwgOEMwwWg6iCoamEFCQUZsGpLhOr/jxn6/z/6f5CB9//e/z3/c/7++vv877MHGx6sfbDmwcoHyx5MedD9IOGByr39QHeRAABARzfieAFjE2EQZ2Bg3QYkS1m3sZ5lQAEscUDxagaG/29APAT5TwRIgnSJ/pny//W//v8P/u0Bigj9C2MgC3BAqKcM3xgZGLUZLjNsYmQCsoGY4S3DfYZNDAyMIQAKyCHTAAAAeAGNVEd320YQ3oUaqwO66gUpi6wpN9K9V4QEYCquKnxvoTRA7VE5+ZLemEvKyvkvA+tC+eRj6m9Iv0VH5+rMLEiml1XhzPdNn3n0rj6/EKn2/NzszO1bN29cv/bcdOtqGPjNxrPelcuXLl44f+7smdOnjh09crhe279vqrpXPuM+PbmzYj+2rVws5HMT42OjIxZnNQE8DmCkKiphIgOZtOo1EUx2/HotkGEMIhGAH6NTstUykExAxAKmEqSGMFl6aLn6J0svs/SGltwWF9lFSiEFfO1L0eMLMwrlT30ZCdgy8g2S0cMoZVRcFz1MVVStCCB8raOD2Md4abHQlM2VQr3G0kIRxSJKsF/eSfn+y9wI1v7gfGqxXBmDUKdBsgy3Z1TgO64b1WvTsE36hmJNExLGmzBhQoo1Kp2ti7T2QN/t2WwxPlRalsvJCwpGEvTVI4HWH0HlEByQPhx468dJ7HwFatIP4BBFvTY7zHPtt5Qcxqq2FPohw3bk1s9/RJI+Ml61HzISwWoCn1UuPSfEWWsdShHqWCe9R91FKWyp01JJ3wlw3Oy2Ao74/XUHwrsR2HGHn4/6rYez12DHzPMKrGooOgki+HtFumcdtzK0uf1PNMOxwDhN2HVpDOs9jy2iAt0ZlemCLTr3mHfkUARWTMyDAbOrTUx3wAzdY+niaOaUhtHq9LIMcOLrCXQXQSSv0GKkDdt+cVypt1fEuSORsRUwgrZrAsamYJy8fu+Ad0Mu2iYFhexjy9FIVLaLcxLDUJxABnH/97XOJAYQOOjWoewQ5hV4Pgpe0t9YkB49gh5JjAtb880y4Yi8AztlY7hdKitYm1PGpe8GO5vA4qW+FxwJfMosAk2X9n9X2cVVfnA36pzHNHJGbbITj75NTwpn4wQ7ySKfAu9u4kVOBVotr8LTsbMMIl4VynHBizBEJNVKBAfMNA9867j0InNX8+ranLw2s6DOmqIHBIbDfQR/CiOVk4XBY4VcNSeU5YxEaGgjIEIUZOMi/oeJag4mEB3PUOweCaG4wwbWWAYcEMGKn9mR/segY3R6zdYg2jipGKfZctzINQ/vxkJa9BOjR44W0OpTKAskcnjLTcKyuU/SVIWSKzKSHQHebYW9mfGYjfSHYfbT3+v877XhsIwGzEUaleEwITyE2u/0q0Yfqq0/0dMDWuicvDanKbjsB2RY+TQwOnfvbMUhiNPFyDCRwhZhdjE69Ty6FjoOoeX0spZz6qKxxu+ed523KNd2do1fm2/Ua6nFGqnkH8+kHv94bkFt2oyJj+fVPYtbzbgRpXuRU5uCMc+gFqEIGkWQQpFmUckZe2fTY6xr2FEDGH2px5nBcgOMs6WelWF2lmiKEiFjITOaMd7AehSxXIZ1DWZeymhkXmHMy3l5r2SVLSflBN1D5D5nLM/ZRomXuZOi16yBe7yb5j0ns+iihRdlFbd/S91eUBslhm7mPyZq0MNzmezgspUUgVimQ3kn6ug48mntu3E1+MuBy8u4JnkZCxkvQUGuNKAoG4RfIfxKho8TPoEnyndzdO/i7m8Dpwt4XrnSBvH45462t2hTEX4Bafun+q8jIzK/AAEAAgAIAAr//wAPeAF8egd8lFXW9zn3PmX6PNMnPZNJMRRDMkzmDYgZMRRDCEmMMUPJIgZEepHlRYyIiNhRUdYuS4ksy9reLDYsdOmLLC/Ly7L2CgKrrCJkLt+9T2YyYPl+D8804J5zT/n/zznPBQKbACSTvAEoqJAdtUhUJpQYjBJVAUrKSkIOJ1ZUOEKOUGkfV8ARiPB7E72m87WJZF58ibzhXPVE6QsAAnMufI4H9XXsUBh1UpOJSJLmQNWqNsasLkKhsrKnA/T1HCF9PQzSAPYtD5V5PW4lmFeIK86EcCRbObLp2lGjGxpH4+f0wLkjjU3NDSNGxYSMxbSdDkzomhE1SypQalCISvniob1lDuTL7injC1O+Mr/xmeJtxeRt/iJviJ8mmrjFOr0BJCZ3QAbkQFu0ypCZ45HcRqNJQkiT/LKsOO02s2Ryudze7CxVUnw+v9+tmKTcgEEymzPRlgN2e5rHaeOXyeeiisnJFagMOSsqSkr45kL8Tr450SfM5/y1V66pGvBwTV1BcYcDEX67QjQkbo8cigTplyVI2OHh/6zdXHO4+iR6SjoxMPzo8O21h2tPx7O2lmylNV/tY5Nwubj3fXUA/8BuFveBr74CoNB84V6pSnFCLhRCL7g7OijfR7Oy3FalR49AcXYRFBnsQUcgkAYO6H15j6wiAGu+I+Ao6pleFDAWKJZMX+aImNunWOpiskIVH796ewAqEzvV9gqX9nQ4Qd8S/1V/ScSM/rmsTP9FfNUNIvzuVlRPMFxY5PB6fY6iwsJw3/JIOOTx+lT+WzaR+xYWecrR7fWFFanqi/33nnn9+v+MvXr7mk933/v5Gy3PrN6yZjg7WFV1D5s2oGoh7nx+k2vvTrkeDT0HKlieXvvakkfecj/5uKnhm6iNHRk27a6bevTL+clH3ulVkX3cBTJUXjip/CDvBiO4wQ95PB6qo/len0+WTRpofo8nLa04mB3UgpeX5PbMLEzzKz4/tapOlXt5a1llpXhN7FF7r8zJ37o/iN15Q2XhvsE8RdajOqwFyrwFGETXr/0F9u9dNnZsWW9869X1azow9qe/kpc7D52mPRf//HcJFrR1npvf9sWX336EO7/9x7lqeUMn6frt8y+//ZD/JjzecOGEAnxvWdzjpTAzWtHbGjRhlhdMXqvLVZSWnl5kpSoChLJVtcwXSPea8vNLSrT0dEnTegyPaZIUqIlJLnSKhAV/pfBuhb9EbE53bYVIM/3S45hfiZ+7th8IFPHN5QuXcscms1vF8kiAZ2qBsEEEFQX7FnJDeNy+8nIF2JLZ7/77DPtk3rJhVV9vefPD+57CzCF98cr82+s631s4/vbxrKPf1XjT0Iqrh/+uafTMxR+9e++mxqZnxzzx5l8embstxo7PeX0Ju3DjoqYJA7C611hyd3hAtH/zpD5jAAVm4DM6Zjj5C5WIAIu9DuxCIB0kuvEBAKGBbSTz+L+3Qm7UZjaZqCSBqtrN+VQgmAMTua3joeaMhBTicTt9wULS8PSj5x58eNk9Z5c9RUrRiPte3MTKzvyHRd5Yh9vFygP4yq3JlfmyfHG+so1LyP/5yqgRNVjuDPclRSGvk7Q+/ejZJY89/OA5sTT7ifVb+zru/OEM7tv0EisFhErSJGUpbrBBOOo3ms0ypVZUVc0umUyqilarYrDxpN1aJrKQuykJwvwz/yPMUOCTXSqlRa6CiEzJy8U4J8DWf/jpM/eeOMZeLMKpxYqbPTyx088Oz8MKtnMuFqefm4gzAKEZPpUqpG1g5qivGRSjkSKAxWo2giJRKOFCysqS4vjNhQXCAa4Bxz1HEI+yNlx0FBextqOk9SjezW49yhaIHbGzuBtOggKe1wgFWVapDCXbdSNt5ghfoNCgMxLA3X1v++dV+eg/vIsdR9MJYWVcS5rISqDg+CuVQQLkSiTc7QoHPANIGq49dw6wi7GwgmvujZoUrrSRNsaMLqjsmfjnkYu4aU6SlJZ28xECNyqt0mMrM2pBricBidueiNS5iDcRA0ir4h+y4yQgGJP/DwLVF05IQ+W9XLoPLou6LYoTFPCnGT0jYkaV2kfEaBok8y+1kkYCeeDQnIEyQI2nUrlDE3kkDT3PzsfZhXMoxZHGw2OmTRl7w+SpLeQoW8gexttwNi7C6ewO9hD7/usTaELr8eOAMA+A1nJtTNAj6jJKAAZEs8WgqihJRgX9wJHOkYoXkf8iwR2RiKKqRRiitWw3lYdnr30cDzNae/8Tw/1L3sS5gFALINXpKDQgmp1pQxW86M3O8aoqMTlNtTGnSjATM2tjXEgCYfS3hKyuCkFHkzBeScI6WKhFVxLuD+EQLt4TkOo6CU5f1drrhvrrVly/dspDayfe+8EtQx7fuJG0HcbZLyyc1r+5qXbojtE1xa0dt4x/5c31r9hA6MYtP5DrVgijoiV5Po6KKs3MBOCVStFlgez8bG57v8/vq4tZ/Gilfr8pX7VqJm1EzJQGeg3j5/xX8ruWMbrG4oduFyXxMEFyQlkpkMeJTvhKbCMY1j/o2ykPlEmSr335KxvYPvbZydev29P65KNrX58+c92zfxv6+Kil76PnU1Sl6fe+l694//zIweMjUO1ZPnH2TU3fxqa09+l/6OHXAQgEAaSZuhddMDiaZ1epkRAzpTKAxyVzrnGh7JLreGi7qF1VqO5WvoGQ0DwF584uo3cpz4sCBzc9T9SAQPKgoqI082X2QfxhshCzXmZ5Jmoo6MvOYAk7gCWH6cudN5+98oSroZZNBoRWbuEw1ygDmqI9OZ36aJrbbTPYqIFmZrldRpdFA27ONADF4/HXxjyKYhkRU9LgYsIJ6e+pgHAkGUjkgUhLSBg2N9w3IMwpylMaKScT/n6efcC+PLN8xActmMGOhu+4bH6EpsV/yAgOoO0n9/+HnR2B5h7hr455LAPJ1+wc+1i1AYGhXOs6eQf4IR+uigYUp8WSlweZTnAWFNpz6mJ2u4d60kbEPGnUwENEvUTbVJbqTCjIAQJlPo8IXEUNdQEJcCAhMvd/gvy8Q3E6TmsbErv++Z2tRuuN/7f1X+zsNyv/vYhoN066sbVlcRuZiq/iWvuP7rEb/7LuhyPfsFPLMffdxfMnz7+1fu5qEc0RPdM6QIHLo14FgCDKRFYNMiWU1MaoAsLfupYpQwobhpDby4OfkoJ4iZQWPyy9jNLm8wLSdEtUyzvBB3lwOVwbLXYqnl6U+o3+Qo/Hnp1ttBtL+ihOZyBQXGwBS0Z9zJIGwfoYXGwTYYlLnVeWdKFwoCSqAj0/LqoW8qk7kShFiku3kK9cfCPVHyDedt/qpeyLL06zk4uXtU1DyfXfE2fPmrng0Ccjbhg+flxtq7zz3ZUzXhrU/O6sjqN73mrbXD2iY/Kzm89vbBp7Y/3VcwaOI3vqq674XdnlYysH1Ym8GajvcgekQQFURnOzZJfFEgyCCwqLtNy6mKZRrzd9RMyrUkMdR+Nfdbfu7DIBzCIaw0J5kS16edcXuNOdBXwbyU1J1ewxtvTOqxtHP/3+JIOl3xOz3v0nmr9Y+f2d8VNjp4xrbbm7jQ5mdazJdtYzasufW2r+83/H0fEE+3DTXbdNum1+Hfd4stOSZuvMURh1OXnyAPjtnsaYXeumMPAnaOwXTOb4NVYT72PqU+xG7xcf6mPNQAQX6/IUcHKmcllV1UUlBRXFZdIaYyZNUjgzJ6Rpm8u6mKrApzM0vUgYbrTrbF2SFHbS18Xa5GhSmF5P7JYqZODSiqKajIK/VYNEqQIEZRigFxShVFwJURhGD6JU0ZlDP443kvW7ccNSPH2abWFfCns140peoYDeNeZHHSqlRgkMcp00ViJSV30QKhkjagSue7JMQH4304/FkrTgKC9Tjh69VLueUScBrhFPNVAUJJTKEur6Ce0u1dCFuorNZH28UayJb2IaDjjNtKWsWmioXPicrpB365FYFc3LTU9PA+B2dlqdhUV2QCMFCAazGmNBl900ImaXkg7mVCR4KJVkyfpRJFR5F86oRckaXOFoe0m/7W6YevPVY5uWvzf1w3P7vm99YGyIHU4139VjH6ob1tLvqqpxR9u2r5m2onVI9RVXsHUX9eMTLkxQdnCc6AuVEIv2VCsq3G5XOGzt77rMZaWBtEDvNOgN0au8hkhEMg3QTPzqkVUq5feAklS7rOucMleiPU7ivc6kQtuiYCqrfNTdlVF8fxLxCKgtj3iUQC44+jrzOa06UfyDSESH3x2j106vnpWmTXnhlT1o+UfT/qt9NdGau79/Zhf73+exCP2T2Pz/ZefZXez6I/gIyv/EkRs7Yf3IFpM1FG27n5x++NQ9Q/otPPTGQSQBH/Pd/9Yf/vjjne1sx152gh0p6f3eKHwYW3/EZZ93sA627uCCpcfMzwj7AIC8WN4IKljh6miAWKkBQZHNZgqip6CSZLOSmpjVSs0yBZocIpTouZRiZWGortKL8gsDiITjI5Uik+LHJ7FXiYTziRJnywoMgWdwNFstbzxXRcbikdvy72CqiPvXAaQznI/t4Idczsm9VLdbktKzzeY83vfZ7QGDlqalDY9ZNLRSTbODPb0mZneCvyYG9BLcSxY9KQVDSTe5ArmSp7voCQYwWfE4HPqnwOu4AyOYNn/C/fPZh2fjx7C84/aZ8xev2nXHraxT3vDKpkVrHaacdQ++/xGdXTuy8Zr4NrZo3PgNgDCXI/UBnh9eKI36VZeLN+NWnxscUBNzSKpskmtiJleyNBOvSfVEKuQRD2+0Iw4l2BUdoTI+ZiikBS+9h9OfOtrxL7aJvdiOkQOHDrc2tEs72U/HmW846xyGi3DSZ3j9azd1FvUDImwoz+E2NIBd1OtGAIdVkjTZUhOTqWTlLbMzaamUcEELnGVzAbVA0BHKleew8ew2Ng534wR8gL3Dxq5ZjO/xGuQP7A55A7ubrcHDnUMBdY8RLs0Mg6L5BgnAqphMiBbFWBOzKNxLAnII3zehaKqJofOXXkp5iCsitPAkbol0bqDV8RN4ijmIm4tl7zK2BLqkUsalGqFvNN1AqVkBQDQJoSl5QlZS0MVSLhaCX7P9dHD8OHKMEwKWxLu8KBdxL6ZDTbQo3e8nNquVEFemy2DIsGlmjQdbOr9BNkt+r+zlsmTu1FB3wd0z5VlnstgW8BBwKLpv9YJL5RlPdMKNOALkU1L14E93sr+yVfg43vTxgZtW/GXnd1vevKGVHafhuOnyAlyMU3AcPjDybB377rOT591Y2mUHeYJu/Ug004jIzW+QJFm2GGhNrMaABoNsUijK3QmbMnfKFN2XPIHtjr/NdmE5uRrDZG78Xj5t2EIGAOCFiawBT+ozgRw+bSAGXiPLwM0MRsr79e4NCw4Rxa5IJL6kRnJurq0bOKEZy79hDV4k7gVL5JHn1l4AdgYS+tfxVS0wMJpjIcRkNiOAzUBl2cq/UrNZoXwP3VtwpgBXF1eWAOXEQAdVfSMRDKBcx1awhYvEZm7FB7CZETKxJf4D39CN6/Hf8XkJ6VIlly6LPUkqBVCQArccJKJUl6GXoPq6r3PD1MsbzldfSPxvRcyR3dAvmukGo9nI1bbxUPHKisdJjEQxq9QGilBcN36X0mUp6hA6Y9DpEYujXuXykscVRBpkK4wudhzbcaSC07GdfUgtRrZEms9Wzok3cw1WSi3nqklH6R3oPr8kYcedOm6WR9NMYETFagVwUFlRVM1MVW5RVLtHv11adI/EnAKwL1KEcM/JO9nv43fpSiwh81U7+qQGdrQtXseFv4FZvycdQPQ8+VKfDHgE0jgAfBZF8RpdNTGjRO01Mer6daQROSBexQQy16Hxpkj+kj3BXubXE3gz1vNr/PlDb76Bs9nSNzaSY+xxdivejVP5tZCj0mP/OYvf4smfoAvtpHU62rkEFkhGowdsNrvdbQXBV3ZNM9TENGr/TSzoRn/ZLXHoEyAo4ckJSx+au+BBspEdYacX8yA6iCb0UGXmlKkTd504Fz8rb/gchAXYat0CdkjjEZynUFmSCDVIJg9AhmYypVOVEwBXRFK5UWSV22N7Ev4uHU92T9OQe+LX7PPaKziWzWZnfL9pJMZW1bO5OPS3LSUP1S3lg9poocvnk0ySppm8njQw8cTzu4wWMA6PAZgtFm40C/WaRcikzJbSWfPzuXKqQ0sxKLdfgl3BF0A82brsgaXLW7gB12EPzH7oTqxuZWvZKtp73M0Tm+Pz4vvlDUeOLdxZwVwPk1KRVS2cQX0ce4s4n+RlpKcHICC7LeCGy4rdAbAELNlGX3ZNzCdRYyq+uhvwVHHWrRpn+IvGGoVFl/MhDadWMcJP9LZen9cr+din7JuOx/ZeN2FqnzFL7767DtWvZu2f2TrnyermlsJrn977BC7f/lkz5g4srx3e8+orqypveeqmzf8qL/13n8KGgcUDKqrHbRP6FwNIYiqrimdLCgBFNBhVKlHOuxSdv3y2lARgcoLtYrOlOn53IGEMEF7k+dXC13JCQdThQHSbDQaX08hRhsdSYuuXVBAOtyLx4BHI6+6CYLnlEXbyLfYFex/D9zz7BAf0ztqVZ+7EwHn6YufCPz33/DraBqjXfyHBI2K+RonRKAOiVZYkC3BDJ+q9VNpUJOaj+sXtVx6h57CC2dmLTMMKdPlKFXO0a4DY+dTwvZeN/qJLhrqRy8gSsx+T0e52yQh+v2ynlszMrKwci9mcnemSzdRvt6NJiOSi+EtCbgo1UyM3WkiKOMKJUtMlGvCIi78nPihD2fPbzWFJ6WPdxqngfix9q9Sr9HQdwoJDth5mUy/nm1hKoRixV/mpUJxwVT85trLi1EAa6twb+aS+9uuhNBsStmnSbVMVzTXLnPpUo6oYTYpJ0C2VLGYDkWXJqFCUkhDL9evG+ooUZ3VpjZj8Izex59h6fnXg56wfNmF/DGMtC5Pi+GHyHdka/47Y4j27dJCYyF2B7wZVlZEQEERvNFFF4QqiSgVDdslOjEH5Z65AarLLowIDZAGWchEZbA/LwDo6mozsXBTfQUqoXleVJiZ0RugfzTJISFUVEExmlYuSRP1I0IAGUcZdOgxNpl1qFqqPbALSzPPvkbfjTVJ6vIrs30m/RXi/0ykkLWUbyWw9T7KjVgXRIIFRJlTBfN2EuvH0BNZX4iUpmc0y8bOPPmIblXMHz60Xa1gA6MDkVFt/ZIKYnGpfnBa6sUmAHY9/mJhqI4S4fJ+QL55xoKIY+VYNoOZTiaaCvQtCfCFHMMy1CH34IX7GMmfKjQd/UoR8AzFIA+R3QIHeUTdBWVYkSTznFd6SVJko0DW+xLKLeyTRZYcwiGjADQ/jqVO8uP6KGOiGzmqyKN4maq1OtpHWXhja9SRIRonoRhEaJZ5K0NrOFyl//vMAAGKNdIQ+qATAwK1gBjVKRVTIdwCUpB/rioP0XWLww7EvHPD6PGRL5ZkqbKpcLx3ptW2gZ/z7GYIdmjju9pfm6E8Zq6OFTovBQvLy/P78LIMhaEkbFrNYZLfbPjjm5jWdnDM4JnvBk0Az/y+ZVYSeXlcUJWdMvMcN9+1u8h0omny9N6YT+huGr1r0xzd+Or/5xbv/On7T8Y9PswO/X3znY5MWPHHDsNfXvfono1K6rn7f+K3vx32E27h55MJbxwOBFVznDsUNTsjh7BvIojRg1Mw2n89szrWA2WPUFFDSh8QUL7iGxEC7mCz83SHi7H5mUeZ0aISzRVANCgTlw1AfH9d2D8WobftHX+7YNsMT+hpLLZbJM2ZOJJNvaZk+Q5rNdrPv2XH2t6XzFTdbPuiJ9jP3rwh0PPOXNWvWAMLoCyfoMWk2eDi6esRYymclxCubh8RkDexcM++lZZJuOTk32SdwmnJoYkjgUBQyIf4DZqJx81Mjh9525cmTzcuHVf/BTQZgFvauOZFVwBH49ZIydr4kH4iQK81M2CcaDRi9Gi+obTZhqFy7xwIOIyi6fTTdPt5ft4+oT4Q+ecShOXlPGioU/BLkji3iOnVPiAnZ9vHnOw9ON/mw7Jv+1omT5kyVp7dNmDnLjWVoRx7zq9vG4YSfTjyy5vt7ViWNk9BynD61y+DMEKROSUpzOLKcJlOm3+OkzuoYFVUUVMesmuoZHFNTel5aloiry3bI3RbgrbNeR4XKwOMJ6AVAxMMtOP2GaQZcT2aVs+/Y3zDt7LdoiJfID985vmNc3Qb61PyZM+d3NmAPdGAahth3Jx+789Eel5+4rCjB7nSOkgMeuCKa7SZElSn1+qwAPhndyHVz283akJgZqJ4bgp8v7QVDiRwWFgxH9KfOeieocBWpiZ1l+9eu3bj/ufm1o2uv6ocGOq9zCZ23rKHh3ZdLPsoafsVgoKAwtzSV26sYyiEKd0SrzFlZAwZIfRwOUqzmSkGUpIHpPXr4fJFg8Kp0K1jRqlj7qv2GxYy5Eke5wr7FpDpWXFxYWDksVqi5e1fH3BkXz+n4pxIOWz79gRHv0LneqJs2FQ76ewKfPao+pSsqEvmsj+ykQFfCF6ZeRcGFyUQK8v26El/4WGzqS33OfxjpXbL2ndc3sTfYvm9+vP3WksHVg5tvOnmsZKGTFc2buvrNabOfa5w5/drrmura10otT/ceNqZjJ5Xzew187smt/1i1bPw9We5Roeh1xYVrZ732vkM6L1UOHVlb2WcEHT5q0qRRuwBhBYC0lmeDB8LRdATw2Y0Wg8Fo9Nolp1MaEnNqJkCjR6D/JfU5336yUOPaKqJJEuCQeFQirWX7O+6YxfZjqapqE/61bQ958LsXt8S/40CwpeDekav/vh0ILAPAD7lsA1jEZFcyGsFksprtJg9Rr4kR6DJ/ZWoO7uobKtNnnyJUlrW3X3ttO14phMgLHn98yIjzPqkFgFxoY259XSt4oSTqd/L0JgaDT/NcE9PAaBctOk/sjOTEKYEwCRGJxwB6tajQpMDBcxoHXzN8CJbum6GLZe60066mRmnd+eJXN6mThXRIWPMH/Un+NdGgxLmTUKrIsmYzWa0Gg8lkN4P41WCzUcXkofbu2oTf3cjSZdpuokXRuGOyi1dx22KswGZWhYd5AffOIrF9jYxdh40sI74Et93MVivueDXr0gYPcG0ouF4DRIkAevQioLvExgPivyvuhO7qQJ5BQRgeLXS7XPrsKDMzI6PAajSaTPkuq9WRKzu46XwOzWzPRJNH7+G7krl7+OC8ePqbjJDCRIiEfKFykdziVfBd8q+ke9n++uvnTGL7vy529F437Xwso/dL097ZwvbVXz9jOnlw3rz12+LfSS1Lh1+/urZpy+F4kfhtxYuQjGCut1tMFxHAq6vrscoOoatQFU0Xx29SyV/XLRG8TS0ierkyof+ZtWWXEPbn7boC9dce3JHE5yf0pzhpostXLJYMcLnSvcYhMa9mp0Nidu8vu/xUrvPeVQMOCCQs6MzrxGVT5986ecr8W6dQmX3ELvzxh7swGyl/I6Xt6/70Qnv7mhfYKbbnQTS8jE7s8wA7B4LrOep1cC1ckMMn1Hl+RVFNlKpZmqrlcuQEq9U9hBOEwa5mQEaKzBKmSBWoSQVlTvPepDFCnPndRKFJtuemosq2GZrG9p/taZv8wfaPbt58TGf7vePdSx/wsv5K9SPtbB87/T/s7H10mU722JDgM67pTN1euaIq8dIsyh+TpOUZ+fg6PcNnz/ZanE5V4I0FhsQsv8m6iSfIBUmS5S2dL8HBXl8ook+LIkFBaLdMkafPPzxZ2v7R5zsmPXeFIQMJ22e1lq48uri9oOMZ9uLa9lNYiho3Z9+6xqU/bcBDAybXN3ZFFJ3LddVEh0mcejw5BCxZZVnUS7wGFxqlMrTMRy+JIqpdWewrCD+6iu3/sre97yvSbCP7xLR8SXyH1LKxZTYkqp/1XIZ4dpmjpLktAEU5bnchWNw5lhxTli9rcMynUdPgGPX+vJ2/2BgiqPTHK2HB5clePsGgXCkPt082oetPnbx1/bDrDtW395oycuG8yJd/3/Xu6MZHa5Zcv2zRrf2wZn1HILfzsvKx+b0rCstHz73+8VXN/8y//JriK/qHR/+30LeE6xuRa8AjToRYDHa7y2UyEIfB4fWZnHbn4JjVYrfL3HVyQt3QpktOVnRhgnBcxKOXvoLpIyFPwCO6cjK3bsas9tdeeHRt8xasYDuu+TD4aeiNN0jGwgknTn4e//yqK4UOT/Gc4zM+cENZ1E8cDrfby3t/j9NoJ7JNtumyPcmJ1sVDgItr7tQYgH+grxdrpR2zt72PpSLjsXRp7XUHt5Mj8dki4Ynt/EpI9JkPcrlm6BV1m0GWiYgIK0G0GNEuC5llKWndDU1X/x0SbTfiOtaElf/INyryZYexkjVJLfFF86aMXUzaumS4AZRtXEaWOMsoSyaOIVng81ETVTMyMjNzVEXJ9plMVLbbMxQ7yDqidR3RdPz2LIDSIO1WQ8wBsin/pGskRZpuUfew19lm7LMwJ1eRcrT7sG6R5NCsqBgvN92NPdk7uARPdt4vtTDH4m9q1lxH/PGvvE03jMkcer4XnuKKI5gApOW6bWqi+YoMaKSUSAQlGWWzQVWtfIZmMSoUAA1mj4T2S2cBqaROkYZeq3KlhdkClOu/mD2BI48cxZHsMWxja46fYO2kPwmyZ7A1fiy+DRewhcJLzK17ycs1KTC73ZrXK0koahm/Jgob/pNT8no0p9XJMTHDAFyVskQJkKKvhBlTUzxHyokifvTqgNsSaw9mmBRz7n4cwoqu+vcfR9RErqqfl+fkfr2/YcZNo8ic866XXnR8Z72xNZI450HXce2MIn+oKqkIYDYgmvQhAm8c7YR/MwyOoefSIULSSMJGySlCWEwR6LrOB4nC0uhAZiCmDrLp6+3xekDI4T38Id7D54ipCHUbcnIcfn+uNTMzIFGXy8qjKd9qSbTzYosp2hbbF7bnuBrm+REWRw08Coc18VTQ4xFQ6+EJhDmL2m6/c/OZG4cpn31T3XpmM9quH32qucGAVz7Z9jEdXMUObcyzBF8xskNVg+knbU8BIO5gJWSlYgMK7tcIpZJMAaCyhONDYlbqCOKOo0cV29lA1ylOauB7yBN7yOHlOmgGQ75bkoI52TabW3Z7qCzl/3/2IIuHzuFynuSi2BZnlftyiBSnzxyCyzwcrImh4e0Xbhz2+9mfKtWtL7xTP39x26LeM2aFPyFVQ7CnuWmyw5K3EXsOrqIfh2dPY5tNjY2nGm7QTxGQIqmCtoEHIlG/Ag4zmKnd7qNeu82mSJSaHQ5QoCRU1lYi9ElBdqqp5pwa1sv/RAMmELwQB0baym968pqFwxaOC99ePv7pgf89chFZcXX5l1NzcyPRii+nphf8lzhBwpbiQanl0rP6Dg26zurbad4v56mukCugE0Wi7Vh7JsTasSV5lIO0dJbKBcljHAhLOdJqfN6cwad7QYchPV3OyCA+n4mYMrPSXCNiBtuIGMiGNH4pGWmKygXqpwH4S8+ePzvOII575nOCTh4R15lS69q26gmSEBt94OCr7YtF6z7vlm8b7mpdcN+rL/fHcyhjZk77c8arjmflv/Bn9kZObzbAuFFEB4A0ST+d2BztZXeaidFqTfd6iV/zO51ado7Fn+avjxnT0sDFqcleG3P6QR7xs+NNXUfUIJTSVqjbjT+pBpRfbpXXFSKawsFwiBuQbNyyZcyzs2sbcS679w9k3/mvbhr+6qufy7sbvojGrt10dOm6WtZ5ttes1keObtl5BAjMBCYFpHXcnkW8R87TLC6j7EsnBrDZ8jIhM/OyYp9LSycWo2xQPZ4ctYBHz/YyHc11H2qb9S+iA4oURXyC3SM+0WGqPrVIoJJaFCmMXFRdbixfuGzBqEk3j1qwfGE43Pbogt+Nn93Y9siC8v1T6+qnzxxRO50cnPC7BcsWhCMLly6MTZs8uu2RtlBo/iNtYyYOnz6ttm7aDBHpCoDEp+PghZnR/7I53U6Plce2UaYyMYkJqxeRED/HBp/idDkbYkCRuuwmm93WEFPtdgt6FMsl5xX9mtiW3kNfypcpEhAfkgPKkCfoEXdAGF7cGCBD0YAVbOGWH374gX38448/vsOW4BViZBv3vHrfq8eO8RdyHMhFiKNCMGoniiKGmUaJSlTVsUcEbCpFdAhyJGBIAFHnAbag8wAAgUm89lnw/0o5D7g2jvTvPzOzu9KCJNSFaAKEBMYHAokSuQpiY04OODjYsWxCcjbkNaluuPdyiXuaS0jHpPfeE0N68fVO/ObSe+8uy39mVlqEzr76oeyi+bG7U3bK83yfkUZBGZwCMyKlaRaXRRTLC6E4JyfkAld4DKmpsbkrK0ttpSafxzc15nHqTVNjepQycUvmivi5NiuyMYtA0qyNo3NOVr9OFfZJmt75WUW7VMhOWtE4fsubj9zRP33SzuaW6LxFB3rWTJj4xSuvXdHyYsOAb/bpj257c+OS5s4tvmrim7appHXPputbn8kPlVdURssit194/xklXdGr7p3261Hh7uKKUGH0uu2nzi8Pxya1V5qmAUYu4UfygiRwVi0/YrQaWIvIdGcQ4pBB7dzU9snCdpLZJF/SOXJNjdRPPa0uMhVd2TKurqk5Mq5FXFPXEB0/7ucNExvqGieOb6wDIIw7lSbR99oBPqhmvm9ikm0mm7/c7yzPc+bV1IrpYEmnX1mlhbZglpActKMVbEo36zBrHWyifBGnSASrw44ZvIhr6bwgFCxiuH4R45HIul+c91p4c3j55tf/fvilPddGFx5b8zJqf5X9DCi9v/m10vvcrj6U09uHsg/0Ke/29invHSBfX7VJ+TAv99nwkcNvfNd82xjlI/4/Su+rLyi3/ObXaPaLTJb0b6xlBfCX+DHKMLqgAOoieZk65HLlmXXU56PLK/RmGI2e9HQbys4GEGweShSEA0F1mAtak3BQbR1SPGxVVo3K6irbp3YM1ToJV3pGr452r7n58XnrWi6tr79h3tY9yqTy/KbYvMvxsYvGRLrPu/BCWegef0l+cNcmpeGP/qIz6oqkNPas06Fd6BEEkMAIbZHRaUaDTKd2RMKCgERqGDdkGNkrBpBGCE4XBIMoIpOMsR4lWko4kLBqJI+K5j8Faab66Q897w8yR4ALIR3yqYfpaPGg8hFyDSo70RG06A12/oayC49HL1E/s9K3DL2QNXzKGb8fhTCZCCJkRZgzSkcQkogAAdYJoQTf6LXQWZQQHjx2hLz1I7pgEIaGErEHWAIzAAhaezTEW+S5kUqBYFHUgcViJEbamxB9uT/ROLFE8QLBIegdsp5+naSN8spKbara53ErgY4FlFnoIwadmhP5X7VaYcvuz5QHAu8h/cO3K+s89eFTJuceP+dft9utd0xUFqDpyj3kqh3K1+H6uhrlzX/ZctHQEckuSNLhJG8MjPTGCNLRbwWDZH+Fr/6Jm7D5hAmyIDMiQ0ZGTrbVkMkqRQ3FUq17vL06HSowmDyctbXd2N5201ln3XjW5a88G6uvnz2nLjJHWMg+7W0766bZL10emd02YWJ7G+NFAYSwiCGdcx+ZGTqdRB35BoSomd9sMRrSZYQkAYOKeoYC8S5MM5WnxriwyfZwnAs9I2/h3kG0RVlFY12UNylYiiCAo/gZTriVRKwOA5LAgiyuTNnkwQ4Hyucer4lJXb96j39EPHUF+JnjK/5+briipGXeqiuf3np9+4YudA6O3jbYEQv6S2bt37Cle8be7rMBwVgcxo+Ir4APJkRy7enY7QbIl/LTzVK65C8mdrvDIed4PSa5IIE5pbQ8dlABTRX6S6xu1DgHrezj3QjuuaN9/n1P7N541ards5oXtJ3REgwFWsOdE/b9v3W9wlu7a432i6at2N7wzOzzq6tvrAr76ePuDExYn+qLI0JEDyCnCdwXdyjui3uFjR/VNMjMIUk6ao6YiGZWHZ0i/DX75U5H1aEgAOK2LmrkhkxmMUmXJFnOsjrBQR/drXNlOGl7yiCq4Y2Z+zTTkbYwT8qwtv73xo0CxS6XhZtDZ7WvpVaAD0ZnlC6fNWF+vigy+yj67YoVdz/PrAF7Z8wo/9mM65SDUhQQLFSOCbslO2RAIOJINwsiAoTMFr0emUykKWYSWc8XiHtk4gMlbe5qgAb7UsMIa0IFwu6bbumd0PqX1/72IW5Tjkmn/3QfCVmPHEWCwiKd8Cj0e7KGEUURmUU6Ebk1RiCQCHSypSLhfEr/+2Eqe2hQsaNeALBCVcRlNjI7Fh1Y7Gaz0W60ySYW9pXNXt9QQI0EXB1/3PjAIiZPQYprQ3RWgnr3Xd88KXuOu/GW5v7s6Kwj6xc5btOZJpzh7hmf2cktXDiKGxPRSYI8MjopD+WfMDoJeePRSb4QbvyciNkVzReismdxFD2z4Oyi0vHr6MwOwnTUfEt8ic9KPBFjIvYqgzhkDw/xTGK3kxc9YlKPgt969IarH3/wwP4nFG9dY+PEiY2NdULbnf0v3Hr7wAu3dHR2dnTMm5cy6s2OlKZTy49OL2AW1Ib01FNiGh70BD7YIdHEB79/Oej1B9UBL+6NL0aoFonqQehRdg4ip/LxIFqsSMPn2KuMXYbaUNsyJZw1fMrGrnIA6Qpa2n5Y+TuAYvg1fgUA6eAP5Nrjj4L8IMFW+uJUVye0D51Au5h8T7W6B7CZSZlyNlXeJ75ClUs8XEnM8as+Eb9qmXpVwDBeWUH+LLTzNU5DpKiQug4YJk0jh0pMoyDbnI1lQp0JPk9rzJdhoRy8xZvKwaN4g9Cm5HHsnddbrUub3bCVWHLF4ldiF1wYPjM27aFzzp37w3lvHP3F7rOrUcnw6jY6d1dT86yJ4eiY0sOnTO6//YLru+j0cyyamXhHhoZU2lu3GPuhiOexHiQ0HfQPYqfoh9HVJ1B0w2//heIgzFQV2SMV52iKgYTCOlIxU1N0cUXaQwR7uWRYkxbXSNDfPYvXhpfEa4MpdD7OPtrg4sg4yUbMNmIRLCjNZEJsvgbgEETRbiYUvqb4syENGQkj/JFkkzkxTAQrMmlscsKiQLvUAAeUNb8G7yQ062PCs0QKkEYsI9rR6nzH9imOvcoLeLew9/ghbKIUT+hoLlq5jiPvcYqZDnXNrC6WKXZGjNP8+VlGYAXOBfY556p5+ZaodTT0KC89ZE+UXqqiG9pSFPdShT1JcXDoO1XhHnmNmZqia+gnXgMYFag1wGbucZ7cAJnQGCmivUCW3ep0GlBamtthAIqVWwGovcRJi9eKLYy8TgmP0+BgddahWmkscQqUlpiPo4MhBwPPA1tV5FzFz7cKwm9+d+CzzzahATIdd1Du/G5GoOPWnR9+ofQoyl1qHsRXeDuriLez36eUA+dUeTlUxtt7N1fgvJMpulHDv1AchOdUhXek4hxNMZBQZI1UzNQUXVzB2vvoeGkj2IAMglnogXTIjaRLBGTZYORGZXcgqMUn8260FqnLBlSM7lL+uB+Vocqr6Rhetkf5tfL7vfj3qKxH+SMavZf++VuaSiUAhD7DLeIHkgA2yIZCCEdyXJ4cuz0tB9LAW+TMK3Ab3QxXJQWpdOWImbyK8arGGFaJqpEG2V2IO/yqihEFV1Wm94Xts3tnv8iA1RevaL1x1sDRP56CjrR2UWL1/ZBiOG0+WqzyvXWXXHDpANrEwNWGNfM3DSi/fHYJ/rbsp+8e6j5uKR4aUmlIXgO18Vocrdaz1uOkKrqR6V8oDkKPqsgfqZipKbq4gr0RJcl9kqDwq4yNv3kb1KtYuCSJSmbrqZpIDiOjjbIoSpJTMDbFZEdTTJAFWdIRyZowKGrdjOZBjePIDroW0tZGwh2UUz1yNcPaH1CQ4fikjst3rbt0NcHv/agMUij5c2Vc18rz5/NZJM3JfMkD1dAaGU3tegXFxQDlWSZTbXkgUGPKKtBBcbEui2SWhkqnxEIQcFgyozFLwnGq7ZUx0g03TH/aTYLqcnOkuuX8iaFL8zhXsVAn4a3SSDRSWl1/RVfoo3fmXTau+ubIbfnTo2vnNjQ0TVjXsWQjbb4+hL9FfuGvkV+cNqai1JldVTJn7srmu+7JLfy6KLhqVGhcaeOylsh5lbWnl49r6TrnKPVMv/LO/azH5ASbVEBr5VQ+UtQfAPb2jbbEazY1vfvCE6Xna+kHfxhi6RUj001a+kAasPTikemClt4lAX+3T+GCYcUDmqJ/lKrwqwogTCEpQjeUQBBOgS2RydU1JDM/P2g3GoNBuabG7/GMKZPlsC/fW50fjVVXsyDp7OxQNJZtNo6aSoF3p+S0NFDHPHgbYiBJgQZGv/ERLZmZ0t5q6wkJKnqMhzBz8MufZG0ZXsZRzHYYrWJk1TDShwoZfiVWbn2rce4L19/03NdfPRtr2nHzvKc/emdx/d3LDyM4XkaJq+cfm/bY8bqFq1fv6FyOvX+1oHvwefbOru7Y0zcz5q91cn3Tq52bInXKZx9RCGvWp8UlOEsQzpxD6T/05acLVrNap952xtZhP0xWx0+0iY+fnCrjtT1FbQ2389oqStRWanr34n+eflDP00eNTBe09C6rWpeVidoeugYAvcGv8LTaXynTgF0DGRLXuBwA/y5J0T00eaRi6JdU8UmS4qDyuqqwJBTvUMXlkqApuriC9Vdu9UkSBIfk5fPVpZGx4MYuV46oJ+kEY0tOTnr6qEKLpcQNmZh+SJ2ImdjppB56CnnSKS02+RpiJifBU2MEnYC8izsQ2clwI9I+1YYLf3Gtkw8SVgdtm4XAwyNdtX46hDAvXCL2GCmnN3ZetuitjjuuvUr5/0PfKX9DwuFDDfpT17zfga0rz19x8fIFq84TXdXF99Wdtr1n/m5lz4fKh8pLyPrJR8gyV+hdtuva4/Mv2Lj1ih27+lg74MwMf2tPV9/aEPAZUHI97ucl3KK2k5t4PReeOJ319ZfAyRW8pRiS+gUt3aSlD6jpeSPTBS29y6C2pIDWK8yCw0JYeIl7wbKhNGJ1pqWZBQEIyYUcNwVKAXHz0vPBYdBQiw8WTxJRTWOGj2+K1tf/PFpXNzVaf2ojO+KOwcEvTpva/POG6c1EmNrUMqWhpRkIfcaHKAN0OZ81eEfOGnzxWQOjb0jBFAZx/C+zhmCNsJ9hQWsvOLVn0n5GBm1eUrt/zK5jR21o/OiJKy9AhwzKa/6alefjSoYJlXV2dVyL7IwUqpp+Qes1ytH2RjTouvnWlnFKMOP2oSGVpeD1c2ZST4ByefGmpvMavgVOruA1XMnTC0emC1p6V0B9A0u1np977PkV5qi9zXh+BQ8XJOgmziYWsLhqD+1vHQZzli2Dxi8VWsCcbXDIRM6dEpOdxEnL+CQocxLLTDtnDWdWTT4Wyh0nAU7ot8Herhf//uZLf5xv0ulUfvGjOONEDrXMYEgzK+CtE9qVsXpQVixvbB7mnLQ8CVqeut5Qc/0zNdcJKk9oH6byMk5M5VGJGk2mO108BE7wQmekxuJwGFF+vs6WAeDL0umKLHa6drMgI7HQX0YznaWSNBddcwhCLotpRQ5tBcd+ThplmiAy+BMMx2M6XcOLuERnVGvx+3WnH9vn31Wm9Cv3oTPQhPGbvaRDW9Q9dstdd/XVrfR7t8jpaBvqQuejTSZZXeCR145+8+1PDivZbnPyN+hT3SphMXhgNARhQWRMoMKEHQ6/X19RkWu3V+Xr9aEchzvgiMYCATCbfxaNmc3YJNDOmfLEZnDT4VwQvFNiQupwHj45Cp00iOdT56kG4bniI7dDo6KTeT2fSk+Ltyhf7dl5pPfHLSgb4QUvT7nsi2+R+bhTt2fL+U90tDx99FwN5Pu4fbWMBnC3/ZprdiD9/ciByqY1XcvYaf26naXlbOCeHGf7BhavuJhFHD0h/FXwSAVgZP0Zi5ozAMh6jE0ZWF4vsh39sg5pyx2NKqQzEZ2XGU+dFNAgrdc1Ne977elTUafn6kbhr2ed0XJ29tMLqh5sYBENqFX4M4lKD8Q9ehmS1eqmkUWyR8ay7CDxvRTYHVKNZ7qk8YhEdy1YcOklCy+67Pqa0tKaiorSGvGlCzavv+iCDZu7ykKhsrKqKkDwa+HPgkEygQuqIm4KNEUEQjLdBhvobPTrYvM6MzavFyCQ9fpZmoNENQebXw6qkISXvbF5mNVHiE23yjF6xRM27knfvXTUtKZoET+/fAk7F+uray7vKyjOr+KHAr4bGHqI3IN7+G5S+AS7SU0nbeih999Xlbp/qtQllG7Sj/p4jIw7kiaIOqTTySBou5KZB5gLq7jGWhvCumKTs7N6sN5L+p1zkG2h8t3HkHQFCVwRmQhIknSCRC8wvD8WUrffQHtNwbWDkz3iI84XlPdRySFI3luLeVIwEfnuWhIEtNuffHstwOzeZBl/+gzwRczUIGsiggSSZNFlkHRtI0Z+oT8E+bOoWSnwxY/oUzVPdILhSZyRP8ezp2Vz+E4SGJn/ndpNDXwrMFMaMYjsRi+qN9Luoz60qB5QH885cqO31JNM8Ua1DBJFgVlJkOt5SRihMGIaeQcIpN7Ap91gROGgt0eWkkvbi2wunXrfKIyCdLA9wszuRplAgHssUq3uc6/avnXvvku37cGf9hzou3r/LbcAELbTizQXhfm75mXsYF6m6kEvys4gbKuXAofMQuS5LUhtbJnmP9AJy8gdX3yp56m7v+Aps89kZzPacGPqPmctKUf+VkA7vpHbtCsijrgDV9RLQAg9pa0JI9VZmsxW0W/VN5vqlE12xKZeO24nRzp2bfoHPRPEf7z2SBs4vvHEBm8ApCxj83oe25YVSSeAEcaCFtqW8B8j5EX48mN//IKMjge2AeK7BW0S+6EYdkQaJaL3+XI8RW5ntmywWIrSafaLika5cnP12dklBpdLzpRy83Knx0heRt66PJxOMvMy82yFPiiEabFCndlkMzXHbNp2YiNNoxZenyxzKUghO/CtQOhvro/H5DgKdA420DrVfS4oWELdb/7qWvq7BuL7XXhXXu9CVyrtGKN5yj0hZNq9ecn93ynPj9q6VMBLtvjQpG+e6ps7ebnwys5f3ucNFDzwTXgIxqK0Tx5wFVff9zVyT//Q4+XsWgfzjp+0n6MTYDbdHRriMbs/Sh7wQyNfQ04lboD45x8nfd7MPgcMBhzF34tPQRpYGbthFXUmWnBEBixim90k62TJikTRaiW6PJLPDTwBLSYu4RpNwn+8DhpfWI1CfA+zWrZnHP5+zefKBrTh0zXKHkmuzliH39q3rwfXHT/UN3Nu1gWuZ9Wn05u0pyuGRuJWn14KAMTT4QTpzcPp0q6k3PF0dS8BvtMDAcsjIIiIQGKXQLYPAt8FgTU2uvZ8EQDruB3sL/EV7krVDmZIWNNupYoPkxTdQ3NGKoYYgS4mKQ4q76sKS0JxHADfqZupKbq4gq9wuaT6/wCVeR0IAAAAAQAAAAEZmiehT9dfDzz1AAkIAAAAAADJQhegAAAAAMnoSqH7DP2oCo0IjQABAAkAAgAAAAAAAHgBY2BkYODo/buCgYGr9zfPv0quXqAIKrgJAJZXBsIAeAFtkQOsGEEQhv/bnd272rZtG0Ft27ZtW1G9dYMiamrbZlgrqN17M89K8uVfTna/oRs4AwCUGVBCU0zQl7DAlEIZWoPOfhXUs0BbVQAL1CG0ZepQd9STPdUW9dQ61FGN+U5LpOW1pswUpmU0hZj+TGOmWnQ2lPNyV2rEoO/A+mUw0CwATG8cNjkwyXzEYZrG9Of5NUyy+XBY7Q4Hm9a8tgCH/WU4bOcwPfmsjc7GvDcYPWk7StjU2G8qAf5xwHQE6D+zHRXUbqzi96bmrEQNEeim4V965jWnB+ho0sNRHnTn7E5H0V3nQAlaAGsawqkxWKfGhDPoO2Ts/Gdwsk5fIecd011vh9O/OaegHO9toBWAfYLM5JBSxvoNquliyEeDvUucbeXvMd55vIqRtTGMJTnzAkP5bdnsXvTX6VGOPkbfYe+yRgh/6xHoLms6QDmmlvyFPThTB2PEtbczfMbr3XUu1JD7fmqUjaYre68jzpPD3wJIH6QH0RyQ5L6Ui/GeGFqDOZLiPj7iXnpkDsKJ5+TwO3LmEe8JYecb2fcazoXMC/Ed4z0J7EFS3MdH3EuPJJX07gom+ff4/DMcpS1ee85bBLQNGO84cgiqPerpVcghUBEeK/S1jzBBfUZbwUv5X/7bkOlslqCEwJ5TBw4lBFsBJdRuHA4vYk/own8RLYvLrQAAeAEc0jWMJFcQxvFnto/5LjEvHrdbmh2Kji9aPL4839TcKPNAa6mlZUyOmZk6lzbPJ3bo56//Cz+Vaqqrat5rY8x7xnzxl3nvo+27jFnz8c/mI9Nmh2XBdMsilrBitsnD9rI8aiN5DI/jSftC9mIf9pMfIB4kHiI+hWfQY5aPAYYYYYwpcyfpMMX0aZzBWZzDeVygchGXcBlX8ApexWt4HW/gLbzNbnfwLt7DJ/p0TX4+Uucji1hCnY/U+cijVB7D46jzkb3Yh/3kB4gHiYeIT+EZ9JjlY4AhRhhjytxJOkwxfRpncBbncB4XqFzEJVzGFbyCV/EaXscbeAtvs9sdvIv3cjmftWavuWs2mg6byt3ooIsFOyx77Kos2kiWsIK/UVPDOjawiQmO4CgdxnAcJzClz2PVbNKsy2ZzvoncjQ66qE2kNpHaRJawgr9RU8M6NrCJCY6gNpFjOI4TmNIn36TNfGSH5RrssKtyN+59b410iF0sUFO0l2UJtY/8jU9rWMcGNjHBEUypf0z8mm7vZLvZaC/LzdhmV2XBvpBF25IlLJOvEFfRI+NjgCFGGGNK5Rs6Z7Ij/45yNzro4m9Ywzo2sIkJjuBj2ZnvLDdjGxntLLWzLGGZfIW4ih4ZHwMMMcIYUyq1s8xkl97bH0y3JkZyM36j/+58rvTQxwBDjDDGNzyVyX35Ccjd6KCLv2EN69jAJiY4go/lfr05F+Ua7CCzGx10sYA9tiWLxCWs2BfyN+Ia1rGBTUxwBEfpMIbjOIEpfdjHvGaTd9LJb0duRp2S1O1I3Y4sYZl8hbiKHhkfAwwxwhhTKt/QOZPfmY3//Ss3Y5tNpTpL9ZQeGR8DDDHCGN/wbCbdfHO5GbW51OZSm8sSlslXiKvokfExwBAjjDGlUpvLTBY0K5KbiDcT672SbXZY6k7lbnTQxQI1h+1FeZTKY3gcT2KvTWUf9pMZIB4kHiI+xcQzxGfpfA7P4wW8yG4eT/kYYIgRxvgb9TWsYwObmOAITlI/xf7TOIOzOIfzuEDlIi7hMq7gFbyK1/A63sBbeJtvdwfv4j28zyaP8QmVL/imL/ENJ5PJHt3RqtyMbbYlPfQxwBAjjPEN9ZksqkMqN6PuV7bZy7LDtuRudNDFwzx1FI/hcTzJp73Yh/3kB4gHiYeIT+EZ9JjlY4AhRhjjb1TWsI4NbGKCIzjJlCmcxhmcxTmcxwVcxCVcxhW8glfxGl7HG3gLbzPxDt7Fe/gY/+egvq0YCAEoCNa1n+KVyTUl3Q0uIhoe+3DnRfV7nXGOc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4xznOMc5znGOc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4xznOMc5znGOc5zjHOc4xznOcY5znOM8XZouTZemS1OAKcAUYAowBZgCTAHm3x31O7p3vNf5c1iXeBkEAQDFcbsJX0IqFBwK7tyEgkPC3R0K7hrXzsIhePPK/7c77jPM1yxSPua0WmuDzNcuNmuLtmq7sbyfsUu7De/xu9fvvvDNfN3ioN9j5pq0ximd1hmd1TmlX7iky7qiq7qmG3pgXYd6pMd6oqd6pud6oZd6pdd6p/f6oI/6pC/KSxvf9F0/1LFl1naRcwwzrAu7AHNarbW6oEu6rCu6qmu6ob9Y7xu+kbfHH1ZopCk25RVrhXKn4LCO6KiOGfvpd+R3is15xXmVWKGRptgaysQKpUwc1hEdVcpEysTI7xTbKHMcKzTSFDtCmVihkab4z0FdI0QQBAEUbRz6XLh3Lc7VcI/WN54IuxXFS97oH58+MBoclE1usbHHW77wlW985wcHHHLEMSecsUuPXMNRqfzib3pcllj5xd+0lSVW5nNIL3nF6389h+Y5NG3Thja0oQ1taEMb2tCGNrQn+QwjrcwxM93gJre4Y89mvsdb3vGeD3zkE5/5wle+8Z0fHHDIEceccMaOX67wNz3747gObCQAQhCKdjlRzBVD5be7rwAmfOMQsUvPLj279OzSYBks49Ibl97In/HCuNDGO+NOW6qlWqqlWqqlWqqlWqqYUkwpphTzifnEfII92IM92IM92IM92IM92IM92I/D4/A4PA6Pw+PwODwOj8M/f7kaaDXQyt7K3mqglcCVwNVAq4FWA60GWglZCVkJWQlZCVkJWQlZDbQyqhpoNdAPh3NAwCAAwwDM+7b2sg8kCjIO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO47AO67AO67AO67AO67AO67AO67AO67AO67AO67AO67AO63AO53AO53AO53AO53AO53AO53AO53AO53AO53AO53AO5xCHOMQhDnGIQxziEIc4xCEOcYhDHOIQhzjEIQ5xiEMd6lCHOtShDnWoQx3qUIc61KEOdahDHepQhzrUoQ6/h+P6RpIjiKEoyOPvCARUoK9LctP5ZqXTop7q/6H/0H+4P9yfPz82bdm2Y9ee/T355bS3/divDW9reFtDb4beDL0ZejP0ZujN0JuhN0Nvht4MvRl6M/Rm6M3w1of3PVnJSlaykpWsZCUrWclKVrKSlaxkJStZySpWsYpVrGIVq1jFKlaxilWsYhWrWMUqVrGa1axmNatZzWpWs5rVrGY1q1nNalazmtWsYQ1rWMMa1rCGNaxhDWtYwxrWsIY1rGENa1nLWtaylrWsZS1rWcta1rKWtaxlLWtZyzrWsY51rGMd61jHOtaxjnWsYx3rWMc61rEeTf1o6kdTP/84rpMqCKAYhmH8Cfy2JjuLCPiYPDH1Y+rH1I+pH1M/pn5M/Zh6FEZhFEZhFEZhFEZhFEZhFFZhFVZhFVZhFVZhFVZhFVbhFE7hFE7hFE7hFE7hFE7hFCKgCChPHQFlc7I52ZxsTgQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQti5bl63L1mXrsnXZuggoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCyt5GQBFQBPTlwD7OEIaBKAxSOrmJVZa2TsJcwJ6r0/+9sBOGnTDshOF+DndyXG7k7vfh9+n35fft978Thp2wKuqqqKtarmq58cYbb7zzzjvvfPDBBx988sknn3zxxRdfPHnyVPip8FPhp8JPhZ8KP78czLdxBDAMAMFc/bdAk4AERoMS5CpQOW82uWyPHexkJzvZyU52spOd7GQnu9jFLnaxi13sYhe72MVudrOb3exmN7vZzW52s8EGG2ywwQYbbLDBBnvZy172spe97GUve9nLJptssskmm2yyySabbLHFFltsscUWW2yxxX6+7P+rH/qtf6+2Z3u2Z3u2Z3u2Z3u2Z3s+O66jKoYBGASA/iUFeLO2tqfgvhIgVkOshvj/8f/jF8VqiL8dqyG+d4klllhiiSWWWGKJJY444ogjjjjiiCOO+Pua0gPv7paRAHgBLcEDlNxQAADArI3Ydv7Vtm3btm3btm3btm3bD7VvBoIgLXVVqCf0ztXT9dzd3j3cvcX90CN5Snmae/p45np2e356gbeH94HP8Q3x3feH/X38NwJwoHigQ2Ba4GBQCK4NfgxVDE0OnQr7w1nCI8P7wi8jdqR4ZGzkRDQSLRmdH/0UqxTrEVsbux/PHe8b3xh/lgglzESJRJfE6MS6ZChZJzkj+RouCA9GJKQuMhI5hsZRHR2A7kZ/YZWxldhtPDPeFd+IPybyE0OIy2SIrEy2IneSX8mvFKB6UpfodPQYeiOTjmnK3GOzsCPYpexaLjdXiRvBHeJ+8BX5Lvxe/qOACmWEnsJ60SsyYjqxiLhE3CoeE6+LL8RvUlRqJXWThkszpJXSbjkq83JaOZ9cXm4gd5IXKZACK4qSSSmiVFWmq0lVUtOr+dXyagO1oxbRSM3UsmnFtOpaC62nNkqbo7M60HPppfXaemu9j77X4IwUI49RxqhrtDWOGzeM92Y985lFWWWtcdZia4d10/piU3YZu6+91j7rME5xp5szGVAgDcgBioDhYDpYDjaDE+AmeAW+p8R/A5ajfCcAAAABAAAA3QCKABYAWAAFAAIAEAAvAFwAAAEAAQsAAwABeAF9jgNuRAEYhL/aDGoc4DluVNtug5pr8xh7jj3jTpK18pszwBDP9NHTP0IPs1DOexlmtpz3sc9iOe9nmddyPsA8+XI+qI1COZ/kliIXhPkiyDo3vCnG2CaEn0+2lH+gmfIvotowZa3769ULZST4K+cujqTb/j36S4w/QmgDF0tWvalemNWLX+KSMBvYkhQSLG2FZR+afmERIsqPpn7+yvxjfMlsTjlihz3OuZE38bTtlAAa/TAFAHgBbMEDjJYBAADQ9/3nu2zbtm3b5p9t17JdQ7Zt21zmvGXXvJrZe0LA37Cw/3lDEBISIVKUaDFixYmXIJHEkkgqmeRSSCmV1NJIK530Msgok8yyyCqb7HLIKZfc8sgrn/wKKKiwIooqprgSSiqltDLKKqe8CiqqpLIqqqqmuhpqqqW2Ouqqp74GGmqksSaaaqa5FlpqpbU22mqnvQ466qSzLrrqprs9NpthprNWeWeWReZba6ctQYR5QaTplvvhp4VWm+Oyt75bZ5fffvljk71uum6fHnpaopfbervhlvfCHnngof36+Gappx57oq+PPpurv34GGGSgwTYYYpihhhthlJFGG+ODscYbZ4JJJjphoykmm2qaT7445ZkDDnrujRcOOeyY46444qirZtvtnPPOBFG+BtFBTBAbxAXxQYJC7rvjrnv/xpJXmpPDXpqXaWDg6MKZX5ZaVJycX5TK4lpalA8SdnMyMITSRjxp+aVFxaUFqUWZ+UVQQWMobcKUlgYAHQ14sAAAeAFFSzVCLEEQ7fpjH113V1ybGPd1KRyiibEhxt1vsj3ZngE9AIfgBmMR5fVk8qElsRjHOHAYW+Qwyumxct4bKxXkWDEvx7JjdszQNAZcekzi9Zho8oV8NCbnIT/fEXNRJwqmlaemnQMbN8E1OE7Mzb/P/8xzKZrEMA2hl3rQATa0Uxs2bN+2f8M2AEpwj5yQBvklvJ3AqRcEaMKrWq/19eWakl7NsZbyJoNblqlZc7KywcRbRnBjc00FeF6/enoi05EcG62tsXhkPcdk87BHVC+ZXleUPrOsUHaUI2tb4y/8OwbsTEAJAA==) format("woff")}*{box-sizing:border-box}body{padding:0;margin:0;font-family:"Open Sans","Helvetica Neue",Helvetica,Arial,sans-serif;font-size:16px;line-height:1.5;color:#606c71}a{color:#1e6bb8;text-decoration:none}a:hover{text-decoration:underline}.page-header{color:#fff;text-align:center;background-color:#159957;background-image:linear-gradient(120deg,#155799,#159957);padding:1.5rem 2rem}.page-header :last-child{margin-bottom:.5rem}@media screen and (max-width:42em){.page-header{padding:1rem 1rem}}.project-name{margin-top:0;margin-bottom:.1rem;font-size:2rem}@media screen and (max-width:42em){.project-name{font-size:1.75rem}}.project-tagline{margin-bottom:2rem;font-weight:400;opacity:.7;font-size:1.5rem}@media screen and (max-width:42em){.project-tagline{font-size:1.2rem}}.project-author,.project-date{font-weight:400;opacity:.7;font-size:1.2rem}@media screen and (max-width:42em){.project-author,.project-date{font-size:1rem}}.main-content,.toc{max-width:64rem;padding:2rem 4rem;margin:0 auto;font-size:1.1rem}.toc{padding-bottom:0}.toc .toc-box{padding:1.5rem;background-color:#f3f6fa;border:solid 1px #dce6f0;border-radius:.3rem}.toc .toc-box .toc-title{margin:0 0 .5rem;text-align:center}.toc .toc-box>ul{margin:0;padding-left:1.5rem}@media screen and (min-width:42em) and (max-width:64em){.toc{padding:2rem 2rem 0}}@media screen and (max-width:42em){.toc{padding:2rem 1rem 0;font-size:1rem}}.main-content :first-child{margin-top:0}@media screen and (min-width:42em) and (max-width:64em){.main-content{padding:2rem}}@media screen and (max-width:42em){.main-content{padding:2rem 1rem;font-size:1rem}}.main-content img{max-width:100%}.main-content h1,.main-content h2,.main-content h3,.main-content h4,.main-content h5,.main-content h6{margin-top:2rem;margin-bottom:1rem;font-weight:400;color:#159957}.main-content p{margin-bottom:1em}.main-content code{padding:2px 4px;font-family:Consolas,"Liberation Mono",Menlo,Courier,monospace;color:#567482;background-color:#f3f6fa;border-radius:.3rem}.main-content pre{padding:.8rem;margin-top:0;margin-bottom:1rem;font:1rem Consolas,"Liberation Mono",Menlo,Courier,monospace;color:#567482;word-wrap:normal;background-color:#f3f6fa;border:solid 1px #dce6f0;border-radius:.3rem;line-height:1.45;overflow:auto}@media screen and (max-width:42em){.main-content pre{font-size:.9rem}}.main-content pre>code{padding:0;margin:0;color:#567482;word-break:normal;white-space:pre;background:0 0;border:0}@media screen and (max-width:42em){.main-content pre>code{font-size:.9rem}}.main-content pre code,.main-content pre tt{display:inline;max-width:initial;padding:0;margin:0;overflow:initial;line-height:inherit;word-wrap:normal;background-color:transparent;border:0}.main-content pre code:after,.main-content pre code:before,.main-content pre tt:after,.main-content pre tt:before{content:normal}.main-content ol,.main-content ul{margin-top:0}.main-content blockquote{padding:0 1rem;margin-left:0;color:#819198;border-left:.3rem solid #dce6f0;font-size:1.2rem}.main-content blockquote>:first-child{margin-top:0}.main-content blockquote>:last-child{margin-bottom:0}@media screen and (max-width:42em){.main-content blockquote{font-size:1.1rem}}.main-content table{width:100%;overflow:auto;word-break:normal;word-break:keep-all;-webkit-overflow-scrolling:touch;border-collapse:collapse;border-spacing:0;margin:1rem 0}.main-content table th{font-weight:700;background-color:#159957;color:#fff}.main-content table td,.main-content table th{padding:.5rem 1rem;border-bottom:1px solid #e9ebec;text-align:left}.main-content table tr:nth-child(odd){background-color:#f2f2f2}.main-content dl{padding:0}.main-content dl dt{padding:0;margin-top:1rem;font-size:1rem;font-weight:700}.main-content dl dd{padding:0;margin-bottom:1rem}.main-content hr{height:2px;padding:0;margin:1rem 0;background-color:#eff0f1;border:0}</style>
</head>
<body>
<section class="page-header">
<h1 class="title toc-ignore project-name">R Basics & Beyond Course
Survey</h1>
<h4 class="date project-date">2024-12-13</h4>
</section>
<section class="main-content">
<div id="section-1-of-5" class="section level2">
<h2>Section 1 of 5</h2>
<div id="graph-courses-post-course-survey" class="section level3">
<h3>GRAPH Courses Post-Course Survey</h3>
<p>Thank you in advance for taking your time to answer these
questions.</p>
<p>Your feedback is extremely valuable in helping us continue to serve
the global community of public health and data science learners.</p>
<p>This survey is fully anonymous, and should take just 10-15
minutes.</p>
<p>Do you permit your anonymous responses to be used in an academic
study on data skills for health professionals?</p>
<ul>
<li>Yes<br />
</li>
<li>No</li>
</ul>
<hr />
</div>
</div>
<div id="section-2-of-5" class="section level2">
<h2>Section 2 of 5</h2>
<div id="student-background" class="section level3">
<h3>STUDENT BACKGROUND</h3>
<p>Gender</p>
<ul>
<li>Woman</li>
<li>Man</li>
<li>Other</li>
</ul>
<p>Age group</p>
<ul>
<li>0-20<br />
</li>
<li>21-30</li>
<li>31-40</li>
<li>41-50</li>
<li>Above 50</li>
</ul>
<p>Highest level of education completed</p>
<ul>
<li>Secondary or below</li>
<li>Bachelor’s</li>
<li>Master’s<br />
</li>
<li>PhD</li>
<li>Other…</li>
</ul>
<p>Current profession (select any that apply)</p>
<ul>
<li>Student</li>
<li>Clinician</li>
<li>Public health professional</li>
<li>Researcher/Academic<br />
</li>
<li>Data professional</li>
<li>Other…</li>
</ul>
<p>Region of residence</p>
<ul>
<li>Africa<br />
</li>
<li>Europe</li>
<li>Oceania</li>
<li>Asia</li>
<li>Northern America</li>
<li>Latin America & the Caribbean</li>
<li>Other…</li>
</ul>
<p>Did you receive financial aid for this course, or did you pay the
full bootcamp fee of 145 USD per month?</p>
<ul>
<li>Received financial aid</li>
<li>Fee was paid personally</li>
<li>Fee was paid by my institution</li>
</ul>
<p>If you received financial aid, what percentage of your course fee was
waived?</p>
<p>Is English your native language?</p>
<ul>
<li>Yes<br />
</li>
<li>No</li>
</ul>
<p>Before this bootcamp, did you have experience with any programming
languages?</p>
<ul>
<li>No experience<br />
</li>
<li>Some experience<br />
</li>
<li>Significant experience</li>
</ul>
<p>Before this bootcamp, did you have previous experience with
statistics or data science?</p>
<ul>
<li>No experience<br />
</li>
<li>Some experience</li>
<li>Significant experience</li>
</ul>
<p>Before this bootcamp, what challenges had you faced in developing
data analysis skills? (Select any that apply)</p>
<ul>
<li>Cost of available courses<br />
</li>
<li>Absence of relevant training materials<br />
</li>
<li>Time constraints with work/studies<br />
</li>
<li>Lack of guidance and support with existing courses<br />
</li>
<li>Other…</li>
</ul>
<hr />
</div>
</div>
<div id="section-3-of-5" class="section level2">
<h2>Section 3 of 5</h2>
<div id="bootcamp-experience" class="section level3">
<h3>BOOTCAMP EXPERIENCE</h3>
<p>Were you able to complete the bootcamp and submit your final
project?</p>
<ul>
<li>Yes<br />
</li>
<li>Not yet but I hope to complete it in the coming weeks<br />
</li>
<li>No, and I am unlikely to complete it due to constraints or other
factors</li>
</ul>
<p>If you will be unable to complete the course, please indicate
why:</p>
<ul>
<li>Course was too difficult<br />
</li>
<li>Lost interest</li>
<li>Did not work with schedule<br />
</li>
<li>Course was too fast</li>
<li>Other…</li>
</ul>
<p>About how many hours per week, outside of the workshop, did you spend
on the materials?</p>
<p>How helpful were the following bootcamp features?</p>
<ul>
<li><p>Pre-recorded video lessons</p>
<ul>
<li>Not helpful<br />
</li>
<li>1<br />
</li>
<li>2</li>
<li>3<br />
</li>
<li>4<br />
</li>
<li>5</li>
<li>6<br />
</li>
<li>7</li>
<li>8<br />
</li>
<li>9<br />
</li>
<li>10<br />
</li>
<li>Extremely helpful</li>
</ul></li>
<li><p>Lesson PDF/HTML handouts</p>
<ul>
<li>Not helpful<br />
</li>
<li>1<br />
</li>
<li>2</li>
<li>3<br />
</li>
<li>4<br />
</li>
<li>5</li>
<li>6<br />
</li>
<li>7</li>
<li>8<br />
</li>
<li>9<br />
</li>
<li>10<br />
</li>
<li>Extremely helpful</li>
</ul></li>
<li><p>Multiple-choice prework quizzes</p>
<ul>
<li>Not helpful<br />
</li>
<li>1<br />
</li>
<li>2</li>
<li>3<br />
</li>
<li>4<br />
</li>
<li>5</li>
<li>6<br />
</li>
<li>7</li>
<li>8<br />
</li>
<li>9<br />
</li>
<li>10<br />
</li>
<li>Extremely helpful</li>
</ul></li>
<li><p>Data quizzes</p>
<ul>
<li>Not helpful<br />
</li>
<li>1<br />
</li>
<li>2</li>
<li>3<br />
</li>
<li>4<br />
</li>
<li>5</li>
<li>6<br />
</li>
<li>7</li>
<li>8<br />
</li>
<li>9<br />
</li>
<li>10<br />
</li>
<li>Extremely helpful</li>
</ul></li>
<li><p>Weekly live workshop sessions</p>
<ul>
<li>Not helpful<br />
</li>
<li>1<br />
</li>
<li>2</li>
<li>3<br />
</li>
<li>4<br />
</li>
<li>5</li>
<li>6<br />
</li>
<li>7</li>
<li>8<br />
</li>
<li>9<br />
</li>
<li>10<br />
</li>
<li>Extremely helpful</li>
</ul></li>
<li><p>Workshop interaction with peers</p>
<ul>
<li>Not helpful<br />
</li>
<li>1<br />
</li>
<li>2</li>
<li>3<br />
</li>
<li>4<br />
</li>
<li>5</li>
<li>6<br />
</li>
<li>7<br />
</li>
<li>8<br />
</li>
<li>9<br />
</li>
<li>10<br />
</li>
<li>Extremely helpful</li>
</ul></li>
<li><p>Workshop interaction with facilitators/instructors</p>
<ul>
<li>Not helpful<br />
</li>
<li>1<br />
</li>
<li>2</li>
<li>3<br />
</li>
<li>4<br />
</li>
<li>5</li>
<li>6<br />
</li>
<li>7</li>
<li>8<br />
</li>
<li>9<br />
</li>
<li>10<br />
</li>
<li>Extremely helpful</li>
</ul></li>
<li><p>Feedback on workshop assignments</p>
<ul>
<li>Not helpful<br />
</li>
<li>1<br />
</li>
<li>2</li>
<li>3<br />
</li>
<li>4<br />
</li>
<li>5</li>
<li>6<br />
</li>
<li>7</li>
<li>8<br />
</li>
<li>9<br />
</li>
<li>10<br />
</li>
<li>Extremely helpful</li>
</ul></li>
<li><p>Using datasets that were health-relevant</p>
<ul>
<li>Not helpful<br />
</li>
<li>1<br />
</li>
<li>2</li>
<li>3<br />
</li>
<li>4<br />
</li>
<li>5</li>
<li>6<br />
</li>
<li>7</li>
<li>8<br />
</li>
<li>9<br />
</li>
<li>10<br />
</li>
<li>Extremely helpful</li>
</ul></li>
<li><p>Study halls with facilitators</p>
<ul>
<li>Not helpful<br />
</li>
<li>1<br />
</li>
<li>2</li>
<li>3<br />
</li>
<li>4<br />
</li>
<li>5</li>
<li>6<br />
</li>
<li>7</li>
<li>8<br />
</li>
<li>9<br />
</li>
<li>10<br />
</li>
<li>Extremely helpful</li>
</ul></li>
<li><p>Online help forum</p>
<ul>
<li>Not helpful<br />
</li>
<li>1<br />
</li>
<li>2</li>
<li>3<br />
</li>
<li>4<br />
</li>
<li>5</li>
<li>6<br />
</li>
<li>7</li>
<li>8<br />
</li>
<li>9<br />
</li>
<li>10<br />
</li>
<li>Extremely helpful</li>
</ul></li>
</ul>
<hr />
</div>
</div>
<div id="section-4-of-5" class="section level2">
<h2>Section 4 of 5</h2>
<div id="outcomes" class="section level3">
<h3>OUTCOMES</h3>
<p>How would you rate your skills in each of the following BEFORE the
bootcamp?</p>
<ul>
<li><p>R programming</p>
<ul>
<li>No experience<br />
</li>
<li>Beginner</li>
<li>Proficient</li>
<li>Expert</li>
</ul></li>
<li><p>Data cleaning</p>
<ul>
<li>No experience</li>
<li>Beginner<br />
</li>
<li>Proficient</li>
<li>Expert</li>
</ul></li>
<li><p>Data transformation</p>
<ul>
<li>No experience<br />
</li>
<li>Beginner</li>
<li>Proficient</li>
<li>Expert</li>
</ul></li>
<li><p>Data visualization</p>
<ul>
<li>No experience</li>
<li>Beginner</li>
<li>Proficient</li>
<li>Expert</li>
</ul></li>
</ul>
<p>How would you rate your skills in each of the following AFTER the
bootcamp?</p>
<ul>
<li><p>R programming</p>
<ul>
<li>No experience</li>
<li>Beginner</li>
<li>Proficient<br />
</li>
<li>Expert</li>
</ul></li>
<li><p>Data cleaning</p>
<ul>
<li>No experience<br />
</li>
<li>Beginner</li>
<li>Proficient</li>
<li>Expert</li>
</ul></li>
<li><p>Data transformation</p>
<ul>
<li>No experience</li>
<li>Beginner</li>
<li>Proficient</li>
<li>Expert</li>
</ul></li>
<li><p>Data visualization</p>
<ul>
<li>No experience<br />
</li>
<li>Beginner</li>
<li>Proficient</li>
<li>Expert</li>
</ul></li>
</ul>
<p>Has participating in the bootcamp led to any of the following?
(Select any that apply)</p>
<ul>
<li>New career opportunity<br />
</li>
<li>Increased use of data analysis in your role<br />
</li>
<li>Presented or published data analysis work<br />
</li>
<li>Further courses in data analysis</li>
<li>Other…</li>
</ul>
<p>Please explain how the course has helped you in your work or studies,
or how you hope the course may help in the future.</p>
<p>Overall, are you satisfied with the quality of the bootcamp?</p>
<ul>
<li>Yes</li>
<li>No</li>
</ul>
<hr />
</div>
</div>
<div id="section-5-of-5" class="section level2">
<h2>Section 5 of 5</h2>
<div id="final-comments" class="section level3">
<h3>Final Comments</h3>
<p>On a scale of 1 to 10, how likely are you to recommend this bootcamp
to a friend or colleague in your field?</p>
<ul>
<li>Very unlikely<br />
</li>
<li>1</li>
<li>2</li>
<li>3<br />
</li>
<li>4</li>
<li>5</li>
<li>6</li>
<li>7<br />
</li>
<li>8</li>
<li>9</li>
<li>10<br />
</li>
<li>Very likely</li>
</ul>
<p>Please share what you felt were the highlights of the course.</p>
<p>Please share any particular challenges you faced during the
course</p>
<p>What topics should we add to a future version of this course, or to
an intermediate course taken after this?</p>
<p>What recommendations do you have for improving the course?</p>
</div>
</div>
</section>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>