Skip to content

Latest commit

 

History

History
82 lines (72 loc) · 3.16 KB

README.md

File metadata and controls

82 lines (72 loc) · 3.16 KB

annot

Analysis of manual annotation of gendered and gender biased language in archival metadata descriptions using the brat rapid annotation tool.

Annotation Taxonomy

Gendered and Gender Biased Language
├── Person Name
│   ├── Unknown
│   ├── Non-binary
│   ├── Feminine
│   └── Masculine
├── Linguistic
│   ├── Generalization
│   ├── Gendered Pronoun
│   └── Gendered Role
└── Contextual
    ├── Empowering
    ├── Occupation
    ├── Omission
    └── Stereotype

Table of Contents

Directory Structure

annot/
├── AnnotationInstructions.docx
├── data/  
│   ├── analysis_data/ (**hidden in GitHub repo**)
│   ├── iaa/
│   └── sample/
├── notebooks/
│   ├── aggregating_data/
│   ├── analyzing_data/
│   ├── cleaning_metadata/
│   └── preparing_data
├── .gitignore
└── README.md

Contents

  • AnnotationInstructions.docx: instructions given to the annotators for labeling archival metadata descriptions in brat (includes the annotation taxonomy)
  • data:
    • data/sample: directory with a sample of the annotated data as a CSV file
    • data/iaa: inter-annotator agreement scores per annotator and per label
    • Note: annotated data will be uploaded to this directory after further analysis
  • notebooks: code written to prepare, aggregate, and analyze the annotated data, and to clean additional metadata fields associated with the annotated data (e.g., date of material, language of material)

Associated Resources

License and Citation

Creative Commons Attribution 4.0 International (CC BY 4.0)

@inproceedings{havens-etal-2022-uncertainty,
    title = "Uncertainty and Inclusivity in Gender Bias Annotation: An Annotation Taxonomy and Annotated Datasets of {B}ritish {E}nglish Text",
    author = "Havens, Lucy  and
      Terras, Melissa and
      Bach, Benjamin  and
      Alex, Beatrice",
    booktitle = "Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)",
    month = jul,
    year = "2022",
    address = "Seattle, Washington",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.gebnlp-1.4",
    pages = "30--57"
}