forked from Junhua-Liao/Light-ASD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_acc_asd.py
77 lines (61 loc) · 2.03 KB
/
evaluate_acc_asd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import torch
from rknn.api import RKNN
import numpy as np
# Execute
# sudo adbd &
# to start adb server on the rk3588s board
# Function to generate RKNN model
def evaluate(onnx_path, rknn_path):
# Create RKNN object
rknn = RKNN()
dynamic_input = [
[[1, 100, 13], [1, 25, 112, 112]],
# [[1, 200, 13], [1, 50, 112, 112]],
# [[1, 300, 13], [1, 75, 112, 112]],
# [[1, 400, 13], [1, 100, 112, 112]],
# [[1, 500, 13], [1, 125, 112, 112]],
# [[1, 600, 13], [1, 150, 112, 112]]
]
# Pre-process config
print('--> Config model')
rknn.config(target_platform='rk3588', optimization_level=3, dynamic_input=dynamic_input)
print('done')
print('--> Loading ONNX model')
ret = rknn.load_onnx(model=onnx_path)
if ret != 0:
print('Load ONNX model failed!')
exit(ret)
print('done')
# Build model
print('--> Building model')
ret = rknn.build(do_quantization=False)
if ret != 0:
print('Build RKNN model failed!')
exit(ret)
print('done')
# Generate test data and save in npy file
out = torch.randn(1, 100, 13).float()
# change out to numpy array
out = out.numpy()
# Save 'out' as a npy file
np.save('evaluate_data_1.npy', out)
out = torch.randn(1, 25, 112, 112).float()
# change out to numpy array
out = out.numpy()
# Save 'out' as a npy file
np.save('evaluate_data_2.npy', out)
# print(score)
# Export RKNN model
print('--> Evaluate RKNN model')
ret = rknn.accuracy_analysis(inputs=['evaluate_data_1.npy', 'evaluate_data_2.npy'], target='rk3588')
print(ret)
# Release RKNN object for next use
rknn.release()
if __name__ == "__main__":
# Define the base path for models
base_model_path = "./models/lightASD"
# Use the base path to construct the full paths
scripted_model_path = f"{base_model_path}.pt"
onnx_model_path = f"{base_model_path}.onnx"
rknn_model_path = f"{base_model_path}.rknn"
evaluate(onnx_model_path, rknn_model_path)