-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcnn.py
89 lines (72 loc) · 3 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from multiprocessing import Pool, cpu_count, freeze_support
import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
from preprocess import ChessDataset
class ChessCNN(nn.Module):
def __init__(self):
super(ChessCNN, self).__init__()
self.conv1 = nn.Conv2d(12, 64, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.fc1 = nn.Linear(128 * 8 * 8, 512)
self.dropout = nn.Dropout(0.5)
self.fc2 = nn.Linear(512, 1)
def forward(self, x):
x = torch.relu(self.conv1(x))
x = torch.relu(self.conv2(x))
x = x.view(-1, 128 * 8 * 8)
x = torch.relu(self.fc1(x))
x = self.dropout(x)
x = self.fc2(x)
return x
def load_model(self, model_path):
model = ChessCNN()
state_dict = torch.load(model_path)
model.load_state_dict(state_dict)
model.eval()
return model
def train_chess_cnn(model, data_loader, optimizer, scheduler, device, epochs=25):
criterion = nn.MSELoss()
model.to(device)
for epoch in range(epochs):
model.train()
running_loss = 0.0
for positions, evaluations in data_loader:
positions, evaluations = positions.to(
device), evaluations.to(device)
optimizer.zero_grad() # Zero the gradients
outputs = model(positions)
loss = criterion(outputs, evaluations.unsqueeze(1))
loss.backward()
optimizer.step()
running_loss += loss.item()
avg_loss = running_loss / len(data_loader)
print(
f'Epoch {epoch+1}/{epochs}, Loss: {loss.item()}, Avg Loss: {avg_loss}')
scheduler.step(avg_loss) # Adjust learning rate based on avg_loss
if __name__ == "__main__":
freeze_support()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f'Using device: {device}')
engine_path = "D:/ChessData/stockfish/stockfish-windows-x86-64-avx2.exe"
model_path = r"C:\Users\tmlaz\Desktop\chesspy\chess_cnn_model_250k.pth"
optimizer_path = r"C:\Users\tmlaz\Desktop\chesspy\chess_cnn_optimizer_250k.pth"
json_file = "chess_from_pgn_250000.json"
dataset = ChessDataset(json_file)
data_loader = DataLoader(dataset, batch_size=32,
shuffle=True, num_workers=4)
model = ChessCNN()
optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-5)
scheduler = ReduceLROnPlateau(
optimizer, 'min', factor=0.1, patience=5, verbose=True)
# model.load_state_dict(torch.load(model_path))
# if os.path.exists(optimizer_path):
# optimizer.load_state_dict(torch.load(optimizer_path))
train_chess_cnn(model, data_loader, optimizer,
scheduler, device, epochs=25)
torch.save(model.state_dict(), model_path)
torch.save(optimizer.state_dict(), optimizer_path)