-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilter.py
52 lines (44 loc) · 1.74 KB
/
filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from numpy import abs, arange, empty, real, fft, sin, cos
from cmath import exp, pi
def generate_ramp_array(n):
results = empty(n, float)
half = (n - 1) // 2 + 1
left = arange(0, half, dtype=int)
results[:half] = left
right = arange(-(n // 2), 0, dtype=int)
results[half:] = right
return results / n
def DFT(F):
M, N = F.shape
range_N = range(N)
range_M = range(M)
exp_item = -1j * pi * 2
return [
[sum([sum([F[m, n] * exp(exp_item * ((k / M) * m + (l / N) * n)) for n in range_N]) for m in range_M]) for l in
range_N] for k in range_M]
def IDFT(F):
M, N = F.shape
range_N = range(N)
range_M = range(M)
exp_item = 1j * pi * 2
return [
[sum([sum([F[m, n] * exp(exp_item * ((k / M) * m + (l / N) * n)) for n in range_N]) for m in range_M]) / M * N
for l in range_N] for k in range_M]
def filter_sinogram(sinogram, type):
detector_quantity = sinogram.shape[1]
ramp_array = generate_ramp_array(detector_quantity)
omega = 2 * pi * ramp_array
fourier_filter = 2 * abs(ramp_array)
if type == "Shepp-logan":
fourier_filter[1:] = fourier_filter[1:] * sin(omega[1:]) / omega[1:]
elif type == "Cosine":
fourier_filter *= cos(omega)
elif type == "Hamming":
fourier_filter *= (0.54 + 0.46 * cos(omega / 2))
elif type == "Hann":
fourier_filter *= (1 + cos(omega / 2)) / 2
# sinogram_freq_domain_filtered = DFT(sinogram) * ramp_filter
# sinogram_filtered = real(IDFT(sinogram_freq_domain_filtered))
sinogram_freq_domain_filtered = fft.fft(sinogram) * fourier_filter # numpy fft is better optimized and much quicker
sinogram_filtered = real(fft.ifft(sinogram_freq_domain_filtered))
return sinogram_filtered