Skip to content

Latest commit

 

History

History
123 lines (121 loc) · 4.25 KB

File metadata and controls

123 lines (121 loc) · 4.25 KB

Inequality constraints (for each time-step $k$)

1. Linear power consumption model inequality constraint power_model_ineq_constraint.m

$$\begin{equation} (n^j(k)-1) \, U_{power} \le \left( m^j_q \, q^j(k) + m^j_s \,s^j(k) + c^j \right) - p^j(k) \le (1-n^j(k)) \, U_{power} \end{equation}$$

The above LHS and RHS inequalities can be represented as:

$$\begin{equation} \left\{ \begin{array}{lll} -m^j_q \, q^j(k) - m^j_s \,s^j(k) + p^j(k)& \le & U_{power} + c^j \\\ + m^j_q \, q^j(k) + m^j_s \,s^j(k) - p^j(k) & \le & U_{power} - c^j \end{array} \right. \quad \forall j \in \mathbf{I}_{pumps} \end{equation}$$

2. Binary linearization of the power consumption variable with respect to pump status - power_ineq_constraint.m

$$\begin{equation} 0 \le p^j(k) \le n^j(k) \, U_{power} \end{equation}$$

which translate into the following two single-sided inequalities:

$$\begin{equation} \left\{ \begin{array}{lll} -p^j(k) & \le & 0 \\\ +p^j(k) - U_{power} \, n^j(k) & \le & 0 \end{array} \right. \quad \forall j \in \mathbf{I}_{pumps} \end{equation}$$

3. Boundary constraints for pipe segment flows - pipe_flow_segment_constraints.m

$$\begin{equation} bb_i^j(k) \, q^j_{i,min} \le ww_i^j(k) \le bb_i^j(k) \, q^j_{i,max} \end{equation}$$

which translate into the following two single-sided inequalities:

$$\begin{equation} \left\{ \begin{array}{lll} -ww_i^j(k) + q^j_{i,min} \, bb_i^j(k) & \le & 0 \\\ +ww_i^j(k) - q^j_{i,max} \, bb_i^j(k) & \le & 0 \end{array} \right. \quad \forall j \in \mathbf{I}_{pipes} \quad \forall i \in \mathbf{I}_{pipesegments} \end{equation}$$

4. Linearized pump speed inequality constraint - s_box_constraints.m

$$\begin{equation} n^j(k) \, s^j_{min} \le s^j(k) \le n^j(k) \, s^j_{max} \end{equation}$$

which translate into the following two single-sided inequalities:

$$\begin{equation} \left\{ \begin{array}{lll} -s^j(k) + s^j_{min} \, n^j(k) & \le & 0 \\\ +s^j(k) - s^j_{max} \, n^j(k) & \le & 0 \end{array} \right. \quad \forall j \in \mathbf{I}_{pumps} \end{equation}$$

5. Linearized pump flow inequality constraint - q_box_constraints.m

$$\begin{equation} 0 \le q^j(k) \le n^j(k) \, q^j_{intcpt}(s^j_{max}) \end{equation}$$

which translate into the following two single-sided inequalities:

$$\begin{equation} \left\{ \begin{array}{lll} -q^j(k) & \le & 0 \\\ +q^j(k) - q^j_{intcpt}(s^j_{max}) \, n^j(k) & \le & 0 \end{array} \right. \quad \forall j \in \mathbf{I}_{pumps} \end{equation}$$

6. Linearized pump hydraulics constraints - pump_equation_constraints.m

$$\begin{equation} -(1-n^j(k)) \, U_{pump} \le \Delta h(k) - \Delta h_{pump}(k) \le (1-n^j(k)) \, U_{pump} \end{equation}$$

where

$$\begin{equation} \Delta h_{pump}(k) = \sum_{i=1}^{n_{s,pump}} \left( dd^j_i \, ss^j_i(k) + ee^j_i \, qq^j_i(k) + ff^j_i \, aa^j_i(k) \right) \end{equation}$$

which translate into the following two single-sided inequalities:

$$\begin{equation} \left\{ \begin{array}{lll} -\Delta h(k) + \Delta h_{pump}(k) + U_{pump} \, n^j(k) & \le & U_{pump} \\\ +\Delta h(k) - \Delta h_{pump}(k) + U_{pump} \, n^j(k) & \le & U_{pump} \end{array} \right. \quad \forall j \in \mathbf{I}_{pumps} \end{equation}$$

7. Linearized pump characteristic domain constraints - pump_domain_constraints.m

$$\begin{equation} m_{ss,i}^n \, ss_i^j(k) + m_{qq,i}^n \, qq_i^j(k) + c_i^n \le 0 \quad \forall i \in \mathbf{I}_{s,pump} \quad \forall j \in \mathbf{I}_{pumps} \quad \forall n \in \{1 \ldots 4\} \end{equation}$$

8. Setting preferences for pump selection within groups of equal pumps to break problem symmetry - pump_symmetry_breaking.m

$$\begin{equation} -n^{j+1}j(k) + n^j(k) \le 0 \quad \forall j \in \{1 \ldots (n_{pumps}-1)\} \quad \textrm{for each pump group with equal pumps} \end{equation}$$