forked from mit-han-lab/tiny-training
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmod.py
293 lines (257 loc) · 9.48 KB
/
mod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import pickle
from mmap import mmap
from multiprocessing.context import assert_spawning
import os, os.path as osp
import numpy as np
import tvm
from tvm import relay, te
from tvm.contrib import graph_executor
import warnings
def mod_save(
mod,
params=None,
meta=None,
path=".models/sample_net",
mod_name="mod.ir",
param_name="weights.params",
):
os.makedirs(path, exist_ok=True)
with open(osp.join(path, mod_name), "w") as fp:
fp.write(str(mod))
if params is not None:
with open(osp.join(path, param_name), "wb") as fp:
fp.write(tvm.runtime.save_param_dict(params))
if meta is not None:
with open(osp.join(path, mod_name.replace(".ir", ".pkl")), "wb") as fp:
# fp.write(str(mod["main"]))
pickle.dump(meta, fp)
def mod_load(
path=".models/sample_net",
mod_name="mod.ir",
param_name="weights.params",
meta=None,
adapt_output_info=False,
):
SEMVER = '#[version = "0.0.5"]\n'
assert osp.exists(osp.join(path, mod_name)), "%s not found " % osp.join(
path, mod_name
)
with open(osp.join(path, mod_name), "r") as fp:
code = fp.read()
if adapt_output_info:
lines = code.split("\n")
segs = lines[0].split("->")
segs[-1] = "{"
line1 = "".join(segs)
lines[0] = line1
code = "\n".join(lines)
metatable = None
if meta is not None:
print("Loading meta table information")
with open(osp.join(path, meta), "rb") as fp:
metatable = pickle.load(fp)
metatable = {
"relay.Constant": [
relay.const(_, dtype=str(_.dtype)) for _ in metatable
]
}
mod_expr = tvm.parser.parse(
SEMVER + code,
"from_string",
None,
metatable,
)
# mod = tvm.IRModule.from_expr(mod_expr)
mod = mod_expr
mod = relay.transform.InferType()(mod)
params = None
if not osp.exists(osp.join(path, param_name)):
warnings.warn("%s not exist! Load none params" % osp.join(path, param_name))
else:
with open(osp.join(path, param_name), "rb") as fp:
bin_params = fp.read()
params = dict(tvm.runtime.load_param_dict(bin_params))
return mod, params
class MRun:
def __init__(self, mod=None, mpath=None, weights=None, wpath=None, target="llvm"):
assert not mod or not mpath
assert mod or mpath
self.dev = tvm.cpu()
if mod:
self.mod = mod
elif mpath:
with open(mpath, "r") as fp:
code = fp.read()
SEMVER = '#[version = "0.0.5"]\n'
mod_expr = tvm.parser.parse_expr(SEMVER + code)
mod = tvm.IRModule.from_expr(mod_expr)
mod = relay.transform.InferType()(mod)
self.mod = mod
self.vs = relay.analysis.all_vars(mod["main"])
self.lib = relay.build(mod, target=target)
self.g = graph_executor.GraphModule(self.lib["default"](tvm.cpu()))
if wpath:
print(f"weights loaded from {wpath}")
with open(wpath, "rb") as fp:
bin_params = fp.read()
params = dict(tvm.runtime.load_param_dict(bin_params))
new_params = {}
for k, v in params.items():
if k[0].isdigit():
k = "v" + k
new_params[k] = v
self.bind_data(new_params)
self.new_params = new_params
elif weights:
self.bind_data(weights)
self.new_params = weights
def randomly_init_weights(self, loc=0, scale=1):
tp = {}
for idx, v in enumerate(self.vs):
shape = [int(_) for _ in v.type_annotation.shape]
dtype = str(v.type_annotation.dtype)
# print(v.type_annotation.shape, v.type_annotation.dtype)
p = np.ones(shape).astype(str(dtype))
p = np.random.normal(loc=loc, scale=scale, size=shape).astype(str(dtype))
tp[str(v.name_hint)] = p
self.bind_data(tp)
return tp
def bind_data(self, data):
if isinstance(data, np.ndarray):
self.g.set_input(self.data_names[0], data)
elif isinstance(data, dict):
for k, v in data.items():
try:
self.g.set_input(k, v)
except (tvm._ffi.base.TVMError, ValueError):
t = self.g.get_input(k)
print(
f"Failed to set_input for |{k}|, feed-in: {v.shape, v.dtype}, expected {t.shape, t.dtype}\n"
)
# raise
exit(0)
def __call__(self, data):
self.bind_data(data)
self.g.run()
r = []
for idx in range(self.g.get_num_outputs()):
_r = self.g.get_output(idx)
r.append(_r)
return r
class ComputeDAG:
def __init__(
self,
path,
mod_name="mod.ir",
param_name="weights.params",
target="llvm",
dev=tvm.cpu(0),
):
self.path = path
self.target = target
self.dev = dev
self.mod2lib = dict()
self.lib2mod = dict()
self.total_args = []
mod, params = mod_load(path, mod_name, param_name)
self.mod = mod
if params is None:
params = {}
self.mod_params = params
# print(param_name, self.mod_params.keys())
# exit(0)
def compile(self, mod_override=None, optimize=False):
# with tvm.transform.PassContext(opt_level = opt_level):
if mod_override is None:
mod_to_build = self.mod
else:
mod_to_build = mod_override
if optimize:
mod_to_build = tvm.transform.Sequential(
[
relay.transform.DeadCodeElimination(),
relay.transform.ToGraphNormalForm(),
relay.transform.FoldConstant(),
relay.transform.SimplifyExpr(),
]
)(mod_to_build)
lib = relay.build(mod_to_build, target=self.target, params=self.mod_params)
lib_params = lib.get_params()
vs = relay.analysis.all_vars(self.mod["main"])
# the first elem is the input
# self.input_name = vs[0].name_hint
vname = [v.name_hint for v in vs][1:]
func_args = []
data_args = []
total_args = []
for arg in relay.analysis.all_vars(self.mod["main"]):
vname = arg.name_hint
if vname.startswith("x"):
# TODO: this is a dirty fix to "let" assignments in TVMIR
# TODO: find the proper binding in TVM underlying calls.
continue
if vname in self.mod_params.keys() or vname[1:] in self.mod_params.keys():
# TODO: dirty fix to variable likes v0.weight
func_args.append(arg)
else:
data_args.append(arg)
# print("==" * 40)
# print(vname, self.mod_params.keys() , func_args, data_args, sep="\n")
total_args.append(arg)
self.total_args = total_args
self.data_args = data_args
self.func_args = func_args
print(f"data_args: @{len(data_args)}", [_.name_hint for _ in data_args])
print(f"func_args: @{len(func_args)}", [_.name_hint for _ in func_args])
# check vars and matched shape
assert len(func_args) <= len(
lib_params.keys()
), f"{len(func_args)}|{len(lib_params.keys())}\n{func_args}\n{lib_params.keys()}"
for idx, args in enumerate(func_args):
v = args.name_hint
p1 = self.mod_params[v]
p2 = lib_params["p" + str(idx)]
# print(p1.shape, p2.shape, p1.shape == p2.shape)
assert (
p1.shape == p2.shape
), f"Shape mismatch for |{v}|, expected: {p1.shape}, get {p2.shape}"
self.mod2lib[v] = "p" + str(idx)
self.lib2mod["p" + str(idx)] = v
self.data_names = [_.name_hint for _ in data_args]
self.lib = lib
self.lib_params = lib.get_params()
self.g = graph_executor.GraphModule(lib["default"](self.dev))
def bind_data(self, data):
if isinstance(data, np.ndarray):
self.g.set_input(self.data_names[0], data)
elif isinstance(data, dict):
for k, v in data.items():
assert k in self.data_names
self.g.set_input(k, v)
def __call__(self, data):
self.bind_data(data)
self.g.run()
r = []
for idx in range(self.g.get_num_outputs()):
_r = self.g.get_output(idx)
r.append(_r)
return r
def get_params(self):
return self.mod_params
def set_params(self, new_param: dict):
new_lib_params = dict()
for k, v in new_param.items():
assert k in self.mod_params, f"[{k}] is unseen is previous parameters."
new_k = self.mod2lib[k]
new_v = tvm.nd.array(v, self.dev)
new_lib_params[new_k] = new_v
self.mod_params[k] = new_v
self.g.load_params(tvm.runtime.save_param_dict(new_lib_params))
def load(self, path):
warnings.warn("DAG.load function is deprecated!")
mod, params = mod_load(path)
self.mod = mod
self.mod_params = params
def save(self, path):
warnings.warn("DAG.save function is deprecated!")
mod_save(self.mod, self.mod_params, self.path)