-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrypto.go
862 lines (782 loc) · 27.9 KB
/
crypto.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
package e3dbClients
import (
"bufio"
"crypto/ed25519"
"crypto/md5"
"crypto/rand"
"crypto/sha512"
"encoding/base64"
"errors"
"fmt"
"io/ioutil"
"os"
"strconv"
"strings"
"github.com/tozny/e3db-clients-go/secretstream"
"golang.org/x/crypto/blake2b"
"golang.org/x/crypto/curve25519"
"golang.org/x/crypto/nacl/box"
"golang.org/x/crypto/nacl/secretbox"
"golang.org/x/crypto/nacl/sign"
"golang.org/x/crypto/pbkdf2"
)
const (
// https://security.stackexchange.com/questions/50878/ecdsa-vs-ecdh-vs-ed25519-vs-curve25519
DefaultEncryptionKeyType = "curve25519"
DefaultSigningKeyType = "ed25519"
DefaultCryptographicMode = "Sodium"
NISTCryptographicMode = "NIST"
SymmetricKeySize = 32
SigningKeySize = 64
PublicSigningKeySize = 32
NonceSize = 24
SaltSize = 16
AccountDerivationRounds = 1000
IdentityDerivationRounds = 10000
// The UUIDv5 is derived from a fixed namespace UUIDv4
// "794253a4-310b-449d-9d8d-4575e8923f40" and a version string
// "TFSP1;ED25519;BLAKE2B"
ToznyFieldSignatureVersionV1 = "e7737e7c-1637-511e-8bab-93c4f3e26fd9" // UUIDv5 TFSP1;ED25519;BLAKE2B
FileVersion = 3
FileBlockSize = 65536
Base64EncodedPublicSigningKeyLength = 43
Base64EncodedPrivateSigningKeyLength = 86
Base64EncodedSymmetricKeyLength = 43
)
var (
PublicKeySizeError = fmt.Errorf("the provided key was not %v bytes long", PublicSigningKeySize)
SignatureVerificationError = fmt.Errorf("the provided message could not be verified with the provided key")
)
// SymmetricKey is used for fast encryption of larger amounts of data
// also referred to as the 'SecretKey'
type SymmetricKey *[SymmetricKeySize]byte
// SigningKey is used for fast signing and verifying properties of data
type SigningKey *[SigningKeySize]byte
// PublicSigningKey is used to verify a signatures
type PublicSigningKey = *[PublicSigningKeySize]byte
// PublicSigningKeyFromBytes returns a PublicSigningKey derived from a byte slice
func PublicSigningKeyFromBytes(publicSigningKeyBytes []byte) (PublicSigningKey, error) {
if len(publicSigningKeyBytes) != PublicSigningKeySize {
return nil, fmt.Errorf("PublicSigningKey must be %d bytes. Provided slice was %d bytes", PublicSigningKeySize, len(publicSigningKeyBytes))
}
var psk [PublicSigningKeySize]byte
copy(psk[:], publicSigningKeyBytes)
return &psk, nil
}
// PublicSigningKeyFromEncodedString returns a PublicSigningKey derived from a base64 encoded string
func PublicSigningKeyFromEncodedString(publicSigningKey string) (PublicSigningKey, error) {
pskBytes, err := Base64Decode(publicSigningKey)
if err != nil {
return nil, err
}
return PublicSigningKeyFromBytes(pskBytes)
}
// Nonce is a type that represents nonce randomly generated unique value that is used once in encrypting data.
type Nonce *[NonceSize]byte
// Key wraps material generated using an algorithm/curve for use in cryptographic operations
type Key struct {
Material string
Type string // e.g. Curve25519
}
// Keys is a map of key type to key material
type Keys map[string]string
// DecryptedData is a map of arbitrary key value pairs where value has been decrypted
type DecryptedData = map[string]string
// EncryptedData is a map of arbitrary key value pairs where the value is in an encrypted, "dotted quad" format
type EncryptedData = map[string]string
// AsymmetricKeypair wraps a public and private key used for
// asymmetric cryptographic operations.
type AsymmetricKeypair struct {
Private Key // Used for decryption and signing
Public Key // Used for authentication and encryption
}
// SigningKeys wraps a keypair for signing and authenticating requests
type SigningKeys AsymmetricKeypair
// EncryptionKeys wraps a keypair for encrypting and decrypting data
type EncryptionKeys AsymmetricKeypair
// PublicEncryptionKeys are a set of keys, NIST or Sodium, used within TozStore to encrypt stored data.
// It's the responsibility of the user to assign proper key types to raw keys obtained internally (db)
// or externally (client calls).
type PublicEncryptionKeys Keys
// PublicSigningKeys are a set of key, NIST or Sodium, used within Tozny to sign requests
// It's the responsibility of the user to assign proper key types to raw keys obtained internally (db)
// or externally (client calls).
type PublicSigningKeys Keys
// GenerateSigningKeys generates a `base64.RawURLEncoding` private and public key
// for signing requests and data on behalf of Tozny clients,
// returning the signing keys and error (if any).
func GenerateSigningKeys() (SigningKeys, error) {
var signingKeys SigningKeys
signingKeyBytes, privateSigningKeyBytes, err := sign.GenerateKey(rand.Reader)
if err != nil {
return signingKeys, err
}
signingKey := base64.RawURLEncoding.EncodeToString(signingKeyBytes[:])
privateSigningKey := base64.RawURLEncoding.EncodeToString(privateSigningKeyBytes[:])
signingKeys = SigningKeys{
Private: Key{
Material: privateSigningKey,
Type: DefaultSigningKeyType},
Public: Key{
Material: signingKey,
Type: DefaultSigningKeyType},
}
return signingKeys, err
}
// GenerateKeyPair creates a new Curve25519 keypair for cryptographic operations.
func GenerateKeyPair() (EncryptionKeys, error) {
var encryptionKeys EncryptionKeys
pub, priv, err := box.GenerateKey(rand.Reader)
if err != nil {
return encryptionKeys, err
}
publicKey := Base64Encode(pub[:])
privateKey := Base64Encode(priv[:])
encryptionKeys = EncryptionKeys{
Private: Key{
Material: privateKey,
Type: DefaultEncryptionKeyType,
},
Public: Key{
Material: publicKey,
Type: DefaultEncryptionKeyType,
},
}
return encryptionKeys, err
}
// EncryptData encrypts a collection of data of string key and values using
// Tozny v1 Record encryption, returning the encrypted data.
func EncryptData(data map[string]string, ak SymmetricKey) *EncryptedData {
encryptedData := make(map[string]string)
for k, v := range data {
dk := RandomSymmetricKey()
ef, efN := SecretBoxEncryptToBase64([]byte(v), dk)
edk, edkN := SecretBoxEncryptToBase64(dk[:], ak)
encryptedData[k] = fmt.Sprintf("%s.%s.%s.%s", edk, edkN, ef, efN)
}
return &encryptedData
}
// DecryptSignedData decrypts and verifies signed payloads for data that has been encrypted and signed using TFSP1;ED25519;BLAKE2B
func DecryptSignedData(data map[string]string, ak SymmetricKey, psk PublicSigningKey, salt string) (DecryptedData, error) {
// the verify function uses the provided public signing key and salt to verify "key-message" pairs that are passed
// as parameters, message should be a TFSP1;ED25519;BLAKE2B formatted string. The returned value is the unsigned message only.
verify := func(key, message string) (string, error) {
verifiedMessage, err := VerifyField(key, message, psk, salt)
return verifiedMessage, err
}
return DecryptDataWithProcessFunction(data, ak, verify)
}
// DecryptData decrypts a collection of data of string key and values encrypted using Tozny v1 Record encryption,
// returning the decrypted data and error (if any).
func DecryptData(data map[string]string, ak SymmetricKey) (DecryptedData, error) {
return DecryptDataWithProcessFunction(data, ak, func(key string, message string) (string, error) { return message, nil })
}
// DecryptDataWithProcessFunction decrypts a map of key value pairs where values are encrypted using Tozny v1 Record encryption
// after description a provided function is run against each key-value pair. The result of the function if err = nil is set as the value
func DecryptDataWithProcessFunction(data map[string]string, ak SymmetricKey, postprocess func(key string, value string) (string, error)) (DecryptedData, error) {
decryptedData := make(map[string]string)
for k, v := range data {
fields := strings.SplitN(v, ".", 4)
if len(fields) != 4 {
return decryptedData, errors.New("invalid record data format")
}
edk := fields[0]
edkN := fields[1]
ef := fields[2]
efN := fields[3]
dkBytes, err := SecretBoxDecryptFromBase64(edk, edkN, ak)
if err != nil {
return decryptedData, err
}
dk := MakeSymmetricKey(dkBytes)
field, err := SecretBoxDecryptFromBase64(ef, efN, dk)
if err != nil {
return decryptedData, errors.New("decryption of field data failed")
}
processedField, err := postprocess(k, string(field))
if err != nil {
return decryptedData, fmt.Errorf("decryption post processing failed: %w", err)
}
decryptedData[k] = processedField
}
return decryptedData, nil
}
// EncryptPrivateKey Encrypts a private key using a keypair.
func EncryptPrivateKey(privateKey Key, encryptionKeys EncryptionKeys) (string, error) {
rawPrivateKeyBytes, err := Base64Decode(privateKey.Material)
if err != nil {
return "", err
}
eak, eakN, err := BoxEncryptToBase64(rawPrivateKeyBytes, encryptionKeys)
if err != nil {
return "", err
}
return fmt.Sprintf("%s.%s", eak, eakN), err
}
// EncryptAccessKey returns encrypted access key with nonce attached.
func EncryptAccessKey(rawAK SymmetricKey, encryptionKeys EncryptionKeys) (string, error) {
eak, eakN, err := BoxEncryptToBase64(rawAK[:], encryptionKeys)
if err != nil {
return "", err
}
return fmt.Sprintf("%s.%s", eak, eakN), err
}
// RandomSymmetricKey generates a random symmetric key (secret).
func RandomSymmetricKey() SymmetricKey {
key := [SymmetricKeySize]byte{}
_, err := rand.Read(key[:])
if err != nil {
// we don't expect this to fail
panic("random number generation failed")
}
return &key
}
// RandomNonce generates a random nonce of size NoneSize
func RandomNonce() Nonce {
b := [NonceSize]byte{}
_, err := rand.Read(b[:])
if err != nil {
// we don't expect this to fail
panic("random number generation failed")
}
return &b
}
// GenerateRandomBytes generate a random number of bytes
func GenerateRandomBytes(n int) ([]byte, error) {
b := make([]byte, n)
_, err := rand.Read(b)
return b, err
}
// GenerateRandomString generate a random base64 encoded string of n bytes.
func GenerateRandomString(n int) (string, error) {
bytes, err := GenerateRandomBytes(n)
if err != nil {
return "", err
}
return Base64Encode(bytes), err
}
// BoxEncryptToBase64 uses asymmetric encryption keys to encrypt data
func BoxEncryptToBase64(data []byte, encryptionKeys EncryptionKeys) (string, string, error) {
n := RandomNonce()
rawPubKey, err := Base64Decode(encryptionKeys.Public.Material)
if err != nil {
return "", "", err
}
rawPrivKey, err := Base64Decode(encryptionKeys.Private.Material)
if err != nil {
return "", "", err
}
pubKey := MakeSymmetricKey(rawPubKey)
privKey := MakeSymmetricKey(rawPrivKey)
ciphertext := box.Seal(nil, data, n, pubKey, privKey)
return Base64Encode(ciphertext), Base64Encode(n[:]), err
}
func BoxDecryptFromBase64(ciphertext, nonce string, pubKey SymmetricKey, privKey SymmetricKey) ([]byte, error) {
ciphertextBytes, err := Base64Decode(ciphertext)
if err != nil {
return nil, err
}
nonceBytes, err := Base64Decode(nonce)
if err != nil {
return nil, err
}
n := MakeNonce(nonceBytes)
plaintext, ok := box.Open(nil, ciphertextBytes, n, pubKey, privKey)
if !ok {
return nil, errors.New("decryption failed")
}
return plaintext, nil
}
// SecretBoxEncryptToBase64 uses an NaCl secret_box to encrypt a byte
// slice with the given secret key and a random nonce,
// returning the Base64URL encoded ciphertext and nonce.
func SecretBoxEncryptToBase64(data []byte, key SymmetricKey) (string, string) {
n := RandomNonce()
box := secretbox.Seal(nil, data, n, key)
return Base64Encode(box), Base64Encode(n[:])
}
// SecretBoxDecryptFromBase64 uses NaCl secret_box to decrypt a
// string containing ciphertext along with the associated
// nonce, both Base64URL encoded. Returns the ciphertext bytes,
// or an error if the authentication check fails when decrypting.
func SecretBoxDecryptFromBase64(ciphertext, nonce string, key SymmetricKey) ([]byte, error) {
ciphertextBytes, err := Base64Decode(ciphertext)
if err != nil {
return nil, err
}
nonceBytes, err := Base64Decode(nonce)
if err != nil {
return nil, err
}
n := MakeNonce(nonceBytes)
plaintext, ok := secretbox.Open(nil, ciphertextBytes, n, key)
if !ok {
return nil, errors.New("decryption failed")
}
return plaintext, nil
}
// MakeSymmetricKey loads an existing secret key from a byte array.
func MakeSymmetricKey(b []byte) SymmetricKey {
key := [SymmetricKeySize]byte{}
copy(key[:], b)
return &key
}
// MakeNonce loads an existing nonce from a byte array.
func MakeNonce(b []byte) Nonce {
n := [NonceSize]byte{}
copy(n[:], b)
return &n
}
// Base64Encode wrapper to base64 encode data.
func Base64Encode(data []byte) string {
return base64.RawURLEncoding.EncodeToString(data)
}
// Base64Decode wrapper to base64 decode data.
func Base64Decode(s string) ([]byte, error) {
return base64.RawURLEncoding.DecodeString(s)
}
// DecodeSymmetricKey decodes a public key from a Base64URL encoded
// string containing a 256-bit Curve25519 public key, returning an
// error if the decode operation fails.
func DecodeSymmetricKey(s string) (SymmetricKey, error) {
bytes, err := Base64Decode(s)
if err != nil {
return nil, err
}
return MakeSymmetricKey(bytes), nil
}
// DecryptEAK decodes and decrypts a raw encrypted access key
// returning the decrypted symmetric key and error (if any).
func DecryptEAK(eak string, authorizerPublicKey string, privateKey SymmetricKey) (SymmetricKey, error) {
fields := strings.SplitN(eak, ".", 2)
if len(fields) != 2 {
return nil, errors.New(fmt.Sprintf("invalid access key format: %s", eak))
}
decodedAuthorizerPublicKey, err := DecodeSymmetricKey(authorizerPublicKey)
if err != nil {
return nil, err
}
akBytes, err := BoxDecryptFromBase64(fields[0], fields[1], decodedAuthorizerPublicKey, privateKey)
if err != nil {
return nil, errors.New("access key decryption failure")
}
ak := MakeSymmetricKey(akBytes)
return ak, nil
}
// Encrypt uses an NaCl secret_box to encrypt a byte
// slice with the given secret key and a random nonce,
// returning the Base64 encoded ciphertext and nonce.
func Encrypt(data []byte, key SymmetricKey) string {
nonce := RandomNonce()
message := secretbox.Seal(nil, data, nonce, key)
return base64.RawURLEncoding.EncodeToString(nonce[:]) + ":" + base64.RawURLEncoding.EncodeToString(message)
}
// Decrypt uses NaCl secret_box to decrypt a
// string containing ciphertext along with the associated
// nonce, both Base64 encoded. Returns the ciphertext bytes,
// or an error if the authentication check fails when decrypting.
func Decrypt(ciphertext string, key SymmetricKey) ([]byte, error) {
parts := strings.Split(ciphertext, ":")
if len(parts) != 2 {
return nil, fmt.Errorf("Expected two parts in cipher text %q", ciphertext)
}
//decode the nonce and message
nonceBytes, err := base64.RawURLEncoding.DecodeString(parts[0])
if err != nil {
return nil, err
}
nonce := MakeNonce(nonceBytes)
message, err := base64.RawURLEncoding.DecodeString(parts[1])
if err != nil {
return nil, err
}
plaintext, ok := secretbox.Open(nil, message, nonce, key)
if !ok {
return nil, errors.New("decryption failed")
}
return plaintext, nil
}
// Sign does a detached signature of the requested message using the provided key
func Sign(message []byte, key SigningKey) []byte {
bytes := sign.Sign(nil, message, key)
offset := len(bytes) - len(message)
return bytes[:offset]
}
// Verify a signature of message using the provided public key, for messages signed with TFSP1;ED25519;BLAKE2B
func Verify(signature string, message string, publicSigningKey PublicSigningKey) (string, error) {
messageBytes, err := Base64Decode(message)
if err != nil {
return "", err
}
// This double encoding is required for TFSP1;ED25519;BLAKE2B signed messages,
// as an artifact of the initial JS implementation
doubleEncodedHash := []byte(Base64Encode(messageBytes))
signatureBytes, err := Base64Decode(signature)
if err != nil {
return "", err
}
signedMessage := append(signatureBytes, doubleEncodedHash...)
var psk [32]byte
copy(psk[:], (*publicSigningKey)[:])
outputBytes, verified := sign.Open(nil, signedMessage, &psk)
if !verified {
return "", SignatureVerificationError
}
return Base64Encode(outputBytes), nil
}
// SignField signs a field - a key value string pair - using Tozny Field Signing Version 1 (TFSV1) protocol
// https://github.com/tozny/internal-docs/blob/master/tozny-platform/notes/tozny-field-signing.md
// in a way compatible with the JS SDK implementation of TFSV1
// returning the signed string and error (if any)
func SignField(fieldName, fieldValue string, privateSigningKey SigningKey, salt string) (string, error) {
// Construct the complete message to sign over
message := salt + fieldName + fieldValue
// Hash the message
hashedMessage, err := HashString(message)
if err != nil {
return "", err
}
// Sign over the hashed message
signatureBytes := Sign([]byte(hashedMessage), privateSigningKey)
signature := Base64Encode(signatureBytes)
// Construct the TFSV1 signature string
signedFieldPrexixes := []string{ToznyFieldSignatureVersionV1, salt, fmt.Sprint(len(signature)), signature}
signedFieldPrefix := strings.Join(signedFieldPrexixes, ";")
return signedFieldPrefix + fieldValue, nil
}
// HashString returns a base64 encoded Blake2b hash of the provided message
func HashString(message string) (string, error) {
hashedMessageAccumlator, err := blake2b.New(Blake2BBytes, nil)
if err != nil {
return "", err
}
hashedMessageAccumlator.Write([]byte(message))
hashedMessageBytes := hashedMessageAccumlator.Sum(nil)
hashedMessage := Base64Encode(hashedMessageBytes)
return hashedMessage, nil
}
// VerifyField verifies TFSP1;ED25519;BLAKE2B fields using the provided public key and salt. Returning the unsigned message and error if any.
func VerifyField(fieldName, fieldValue string, publicSigningKey PublicSigningKey, salt string) (string, error) {
parts := strings.SplitN(fieldValue, ";", 4)
if parts[0] != ToznyFieldSignatureVersionV1 {
return "", fmt.Errorf("VerifyField: The field signature version was not a known value and could not be verified. Provided version: %s", parts[0])
}
if len(parts) != 4 {
return "", fmt.Errorf("VerfiyField: The field %s could not be verified. A known signature version was provided but signature was malformed", fieldName)
}
if salt != "" && salt != parts[1] {
return "", fmt.Errorf("VerifyField: The field %s could not be verified. Invalid salt on signature", fieldName)
}
// Sum of the len of the first three parts plus the 3 semicolons removed in the split
headerLength := len(parts[0]) + len(parts[1]) + len(parts[2]) + 3
signatureLength, err := strconv.Atoi(parts[2])
if err != nil {
return "", err
}
plainTextIndex := headerLength + signatureLength
signature := fieldValue[headerLength:plainTextIndex]
plaintext := fieldValue[plainTextIndex:]
messageHash, err := HashString(parts[1] + fieldName + plaintext)
if err != nil {
return "", err
}
_, err = Verify(signature, messageHash, publicSigningKey)
if err != nil {
return "", err
}
return plaintext, nil
}
// DeriveSymmetricKey create a symmetric encryption key from a seed and a salt
func DeriveSymmetricKey(seed []byte, salt []byte, iter int) *[32]byte {
secretKey := new([32]byte)
skBytes := pbkdf2.Key(seed, salt, iter, 32, sha512.New)
copy(secretKey[:], skBytes)
return secretKey
}
// DeriveCryptoKey creates an encryption key pair from a seed and a salt
func DeriveCryptoKey(seed []byte, salt []byte, iter int) (*[32]byte, *[32]byte) {
// Make the private public keys
publicKey := new([32]byte)
privateKey := new([32]byte)
// Seed the key using pbkdf2
seed25519 := pbkdf2.Key(seed, salt, iter, 32, sha512.New)
// Libsodium hashes the seed with sha512 for the secret key
hasher := sha512.New()
hasher.Write(seed25519)
sk := hasher.Sum(nil)
copy(privateKey[:], sk)
// Make the key pair
curve25519.ScalarBaseMult(publicKey, privateKey)
return publicKey, privateKey
}
// DeriveSigningKey creates an encryption key pair from a seed and a salt
func DeriveSigningKey(seed []byte, salt []byte, iter int) (*[32]byte, *[64]byte) {
// Make the private public keys
publicKey := new([32]byte)
privateKey := new([64]byte)
// Seed the key using pbkdf2
seed25519 := pbkdf2.Key(seed, salt, iter, 32, sha512.New)
// Create the signing key pair
privateKeyBytes := ed25519.NewKeyFromSeed(seed25519)
copy((*privateKey)[:], privateKeyBytes[:])
copy((*publicKey)[:], privateKeyBytes[32:])
return publicKey, privateKey
}
// DeriveIdentityCredentialsNoteName derives a note name for the given parameters
func DeriveIdentityCredentialsNoteName(username string, realmName string) (string, error) {
nameSeed := fmt.Sprintf("%s@realm:%s", username, realmName)
hashedMessageAccumlator, err := blake2b.New(Blake2BBytes, nil)
if err != nil {
return "", err
}
hashedMessageAccumlator.Write([]byte(nameSeed))
hashedMessageBytes := hashedMessageAccumlator.Sum(nil)
noteName := Base64Encode(hashedMessageBytes)
return noteName, err
}
// DeriveBrokerOTPCredentialNoteName derives a broker otp note name for the given parameters
func DeriveBrokerOTPCredentialNoteName(username string, realmName string) (string, error) {
nameSeed := fmt.Sprintf("broker_otp:%s@realm:%s", username, realmName)
hashedMessageAccumlator, err := blake2b.New(Blake2BBytes, nil)
if err != nil {
return "", err
}
hashedMessageAccumlator.Write([]byte(nameSeed))
hashedMessageBytes := hashedMessageAccumlator.Sum(nil)
noteName := Base64Encode(hashedMessageBytes)
return noteName, err
}
// DeriveIdentityCredentials derives a set of encryption keys, signing keys and a note name for the given parameters using pbkdf2
func DeriveIdentityCredentials(username string, password string, realmName string, nameSalt string) (string, EncryptionKeys, SigningKeys, error) {
nameSeed := fmt.Sprintf("%s@realm:%s", username, realmName)
if nameSalt != "" {
nameSeed = fmt.Sprintf("%s:%s", nameSalt, nameSeed)
}
hashedMessageAccumlator, err := blake2b.New(Blake2BBytes, nil)
if err != nil {
return "", EncryptionKeys{}, SigningKeys{}, err
}
hashedMessageAccumlator.Write([]byte(nameSeed))
hashedMessageBytes := hashedMessageAccumlator.Sum(nil)
noteName := Base64Encode(hashedMessageBytes)
cryptoPublicKey, cryptoPrivateKey := DeriveCryptoKey(
[]byte(password),
[]byte(nameSeed),
IdentityDerivationRounds,
)
cryptoKeyPair := EncryptionKeys{
Public: Key{
Type: DefaultEncryptionKeyType,
Material: Base64Encode(cryptoPublicKey[:]),
},
Private: Key{
Type: DefaultEncryptionKeyType,
Material: Base64Encode(cryptoPrivateKey[:]),
},
}
signingPublicKey, signingPrivateKey := DeriveSigningKey(
[]byte(password),
[]byte(cryptoKeyPair.Public.Material+cryptoKeyPair.Private.Material),
IdentityDerivationRounds,
)
signingKeyPair := SigningKeys{
Public: Key{
Type: DefaultSigningKeyType,
Material: Base64Encode(signingPublicKey[:]),
},
Private: Key{
Type: DefaultSigningKeyType,
Material: Base64Encode(signingPrivateKey[:]),
},
}
return noteName, cryptoKeyPair, signingKeyPair, nil
}
// DeriveBrokerKeyNoteName derives a broker otp note name for the given parameters
func DeriveBrokerKeyNoteName(username string, realmName string) (string, error) {
nameSeed := fmt.Sprintf("brokerKey:%s@realm:%s", username, realmName)
hashedMessageAccumlator, err := blake2b.New(Blake2BBytes, nil)
if err != nil {
return "", err
}
hashedMessageAccumlator.Write([]byte(nameSeed))
hashedMessageBytes := hashedMessageAccumlator.Sum(nil)
noteName := Base64Encode(hashedMessageBytes)
return noteName, err
}
type EncryptedFileInfo struct {
EncryptedFileName string
Size int
Checksum string
}
// EncryptFile encrypts the contents of the file plainFileName using the ak and stores the ciphertext in encryptedFileName
func EncryptFile(plainFileName string, encryptedFileName string, ak SymmetricKey) (*EncryptedFileInfo, error) {
hasher := md5.New()
var dk []byte
dkSymmetric := RandomSymmetricKey()
dk = dkSymmetric[:]
edk, edkN := SecretBoxEncryptToBase64(dk[:], ak)
headerText := fmt.Sprintf("%v.%s.%s.", FileVersion, edk, edkN)
headerBytes := []byte(headerText)
hasher.Write(headerBytes)
// create and open encryptedFileName
tempFile, err := ioutil.TempFile("", encryptedFileName)
if err != nil {
return nil, err
}
// write the header to the encrypted file
size, err := tempFile.Write(headerBytes)
if err != nil {
return nil, err
}
readFile, err := os.Open(plainFileName)
if err != nil {
return nil, err
}
defer func() {
if err = readFile.Close(); err != nil {
fmt.Println("e3db-clients-go:EncryptFile: error closing file: ", err)
}
}()
// create random header and write to encrypted file
var header []byte
nonce := RandomNonce()
header = nonce[:]
x, err := tempFile.Write(header)
if err != nil {
return nil, err
}
size += x
hasher.Write(header)
// create a new encryption stream
encryptor, err := secretstream.NewEncryptor(header, dk)
if err != nil {
return nil, err
}
r := bufio.NewReader(readFile)
var nextBlock []byte
headBlock := make([]byte, FileBlockSize)
m, err := r.Read(headBlock)
if err != nil {
return nil, err
}
var block []byte
// encrypt each block of the file with the appropriate tag
for {
nextBlock = make([]byte, FileBlockSize)
n, err := r.Read(nextBlock)
var tag byte
if err != nil {
tag = secretstream.TagFinal
} else {
tag = secretstream.TagMessage
}
readBlock := headBlock[0:m]
block, err = encryptor.Push(readBlock, nil, tag)
if err != nil {
return nil, err
}
y, err := tempFile.Write(block)
if err != nil {
return nil, err
}
size += y
hasher.Write(block)
if tag == secretstream.TagFinal {
break
}
copy(headBlock, nextBlock)
m = n
}
// calculate the checksum
md5 := hasher.Sum(nil)
checksum := base64.StdEncoding.EncodeToString(md5)
encryptionInfo := &EncryptedFileInfo{
EncryptedFileName: tempFile.Name(),
Size: size,
Checksum: checksum,
}
return encryptionInfo, nil
}
// DecryptFile decrypts the contents of the file encryptedFileName using the ak and stores the plaintext in decryptedFileName
// If a file called encryptedFileName exists in this directory, it will be overwritten by this method.
func DecryptFile(encryptedFileName string, decryptedFileName string, ak SymmetricKey) error {
extraHeaderSize := secretstream.HeaderBytes
blockSize := secretstream.AdditionalBytes + FileBlockSize
readFile, err := os.Open(encryptedFileName)
if err != nil {
return err
}
defer func() {
if err = readFile.Close(); err != nil {
fmt.Println("e3db-clients-go:DecryptFile: error closing file: ", err)
}
}()
readFileHeader, err := os.Open(encryptedFileName)
if err != nil {
return err
}
defer func() {
if err = readFileHeader.Close(); err != nil {
fmt.Println("e3db-clients-go:DecryptFile: error closing header file: ", err)
}
}()
decryptedFile, err := os.Create(decryptedFileName)
if err != nil {
return err
}
r := bufio.NewReader(readFileHeader)
readFirst := make([]byte, 4096)
n, err := r.Read(readFirst)
if err != nil {
return err
}
// read header and extract version, edk, edkN
readHeaderBlock := readFirst[0:n]
headerString := string(readHeaderBlock)
s := strings.Split(headerString, ".")
version, err := strconv.Atoi(s[0])
if err != nil || version != FileVersion {
return err
}
edk := s[1]
edkN := s[2]
// get the dk
dkBytes, err := SecretBoxDecryptFromBase64(edk, edkN, ak)
if err != nil {
return err
}
var dk []byte
dkSymm := MakeSymmetricKey(dkBytes)
dk = dkSymm[:]
headerLength := len(s[0]+s[1]+s[2]) + 3
readHeader := make([]byte, headerLength)
readExtraHeader := make([]byte, extraHeaderSize)
readCtxt := make([]byte, blockSize)
_, err = readFile.Read(readHeader)
if err != nil {
return err
}
// get the extra header and use it to make decryption stream
n, err = readFile.Read(readExtraHeader)
if err != nil {
return err
}
decryptor, err := secretstream.NewDecryptor(readExtraHeader[0:n], dk)
// read each block and decrypt, writing the result to the decrypted file
for {
n, err = readFile.Read(readCtxt)
msg, tag, err := decryptor.Pull(readCtxt[0:n], nil)
if err != nil {
return err
}
_, err = decryptedFile.Write(msg)
if err != nil {
return err
}
if tag == secretstream.TagFinal {
break
}
}
decryptedFile.Close()
return nil
}