forked from derekparker/trie
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrie.go
285 lines (245 loc) · 5.44 KB
/
trie.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
// Implementation of an R-Way Trie data structure.
//
// A Trie has a root Node which is the base of the tree.
// Each subsequent Node has a letter and children, which are
// nodes that have letter values associated with them.
package trie
import "sort"
type Node struct {
val rune
term bool
depth int
meta interface{}
mask uint64
parent *Node
children map[rune]*Node
}
type Trie struct {
root *Node
size int
}
type ByKeys []string
func (a ByKeys) Len() int { return len(a) }
func (a ByKeys) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a ByKeys) Less(i, j int) bool { return len(a[i]) < len(a[j]) }
const nul = 0x0
// Creates a new Trie with an initialized root Node.
func New() *Trie {
return &Trie{
root: &Node{children: make(map[rune]*Node), depth: 0},
size: 0,
}
}
// Returns the root node for the Trie.
func (t *Trie) Root() *Node {
return t.root
}
// Adds the key to the Trie, including meta data. Meta data
// is stored as `interface{}` and must be type cast by
// the caller.
func (t *Trie) Add(key string, meta interface{}) *Node {
t.size++
runes := []rune(key)
bitmask := maskruneslice(runes)
node := t.root
node.mask |= bitmask
for i := range runes {
r := runes[i]
bitmask = maskruneslice(runes[i:])
if n, ok := node.children[r]; ok {
node = n
node.mask |= bitmask
} else {
node = node.NewChild(r, bitmask, nil, false)
}
}
node = node.NewChild(nul, 0, meta, true)
return node
}
// Finds and returns meta data associated
// with `key`.
func (t *Trie) Find(key string) (*Node, bool) {
node := findNode(t.Root(), []rune(key))
if node == nil {
return nil, false
}
node, ok := node.Children()[nul]
if !ok || !node.term {
return nil, false
}
return node, true
}
func (t *Trie) HasKeysWithPrefix(key string) bool {
node := findNode(t.Root(), []rune(key))
return node != nil
}
// Removes a key from the trie, ensuring that
// all bitmasks up to root are appropriately recalculated.
func (t *Trie) Remove(key string) {
var (
i int
rs = []rune(key)
node = findNode(t.Root(), []rune(key))
)
t.size--
for n := node.Parent(); n != nil; n = n.Parent() {
i++
if len(n.Children()) > 1 {
r := rs[len(rs)-i]
n.RemoveChild(r)
break
}
}
}
// Returns all the keys currently stored in the trie.
func (t *Trie) Keys() []string {
return t.PrefixSearch("")
}
// Performs a fuzzy search against the keys in the trie.
func (t Trie) FuzzySearch(pre string) []string {
keys := fuzzycollect(t.Root(), []rune(pre))
sort.Sort(ByKeys(keys))
return keys
}
// Performs a prefix search against the keys in the trie.
func (t Trie) PrefixSearch(pre string) []string {
node := findNode(t.Root(), []rune(pre))
if node == nil {
return nil
}
return collect(node)
}
// Creates and returns a pointer to a new child for the node.
func (n *Node) NewChild(val rune, bitmask uint64, meta interface{}, term bool) *Node {
node := &Node{
val: val,
mask: bitmask,
term: term,
meta: meta,
parent: n,
children: make(map[rune]*Node),
depth: n.depth + 1,
}
n.children[val] = node
n.mask |= bitmask
return node
}
func (n *Node) RemoveChild(r rune) {
delete(n.children, r)
for nd := n.parent; nd != nil; nd = nd.parent {
nd.mask ^= nd.mask
nd.mask |= uint64(1) << uint64(nd.val-'a')
for _, c := range nd.children {
nd.mask |= c.mask
}
}
}
// Returns the parent of this node.
func (n Node) Parent() *Node {
return n.parent
}
// Returns the meta information of this node.
func (n Node) Meta() interface{} {
return n.meta
}
// Returns the children of this node.
func (n Node) Children() map[rune]*Node {
return n.children
}
func (n Node) Terminating() bool {
return n.term
}
func (n Node) Val() rune {
return n.val
}
func (n Node) Depth() int {
return n.depth
}
// Returns a uint64 representing the current
// mask of this node.
func (n Node) Mask() uint64 {
return n.mask
}
func findNode(node *Node, runes []rune) *Node {
if node == nil {
return nil
}
if len(runes) == 0 {
return node
}
n, ok := node.Children()[runes[0]]
if !ok {
return nil
}
var nrunes []rune
if len(runes) > 1 {
nrunes = runes[1:]
} else {
nrunes = runes[0:0]
}
return findNode(n, nrunes)
}
func maskruneslice(rs []rune) uint64 {
var m uint64
for _, r := range rs {
m |= uint64(1) << uint64(r-'a')
}
return m
}
func collect(node *Node) []string {
var (
keys []string
n *Node
i int
)
nodes := []*Node{node}
for l := len(nodes); l != 0; l = len(nodes) {
i = l - 1
n = nodes[i]
nodes = nodes[:i]
for _, c := range n.children {
nodes = append(nodes, c)
}
if n.term {
word := ""
for p := n.parent; p.depth != 0; p = p.parent {
word = string(p.val) + word
}
keys = append(keys, word)
}
}
return keys
}
type potentialSubtree struct {
idx int
node *Node
}
func fuzzycollect(node *Node, partial []rune) []string {
var (
m uint64
i int
p potentialSubtree
keys []string
)
potential := []potentialSubtree{potentialSubtree{node: node, idx: 0}}
for l := len(potential); l > 0; l = len(potential) {
i = l - 1
p = potential[i]
potential = potential[:i]
m = maskruneslice(partial[p.idx:])
if (p.node.mask & m) != m {
continue
}
if p.node.val == partial[p.idx] {
p.idx++
if p.idx == len(partial) {
keys = append(keys, collect(p.node)...)
continue
}
}
for _, c := range p.node.children {
potential = append(potential, potentialSubtree{node: c, idx: p.idx})
}
}
return keys
}