-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathracetrack.py
211 lines (171 loc) · 4.89 KB
/
racetrack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import sys
from os.path import dirname, join, realpath
dir_path = dirname(dirname(realpath(__file__)))
sys.path.insert(1, join(dir_path, 'utils'))
from typing import Tuple
import numpy as np
import matplotlib.pyplot as plt
from tqdm import trange
from env import RaceTrack
np.random.seed(1)
class OffPolicyMonteCarloControl:
'''
Off-policy Monte Carlo control using weighted IS agent
Q: state-action value function
C_n = C(S_n, A_n): cumulative sum of the weights given to the first n returns
G += gamma * R_{t+1}
C(S_t, A_t) += W
Q(S_t, A_t) += W / C(S_t, A_t) * [G - Q(S_t, A_t)]
W *= 1 / b(A_t|S_t)
'''
def __init__(self, env: RaceTrack,
gamma: float, epsilon: float,
n_eps: int) -> None:
'''
Params
------
env: RaceTrack env
gamma: discount factor
epsilon: exloration param
n_eps: number of episodes
'''
self.env = env
self.gamma = gamma
self.epsilon = epsilon
self.n_eps = n_eps
position_x_dim, position_y_dim = env.position_space.shape
velocity_x_dim, velocity_y_dim, _ = env.velocity_space.shape
action_size = len(env.action_space)
self.Q = np.zeros((position_x_dim, position_y_dim,
velocity_x_dim, velocity_y_dim, action_size)) - 40
self.C = np.zeros((position_x_dim, position_y_dim,
velocity_x_dim, velocity_y_dim, action_size))
self.pi = np.random.randint(action_size, size=(position_x_dim,
position_y_dim, velocity_x_dim, velocity_y_dim), dtype=np.int16)
def _reset(self) -> np.ndarray:
'''
Reset agent
'''
return self.env.reset()
def _behavior_policy(self, state) -> Tuple[int, int]:
'''
Epsilon-greedy policy
Return
------
action: chosen action
'''
if np.random.binomial(1, self.epsilon):
action = np.random.choice(self.env.action_space)
else:
action = self._greedy_policy(state)
return action
def _greedy_policy(self, state) -> Tuple[int, int]:
'''
Greedy policy
Return
------
action: chosen action
'''
p_x, p_y, v_x, v_y = state[0, 0], state[0, 1], \
state[1, 0], state[1, 1]
max_value = self.Q[p_x, p_y, v_x, v_y, :].max()
action = np.random.choice(np.flatnonzero(
self.Q[p_x, p_y, v_x, v_y, :] == max_value))
return action
def _run_episode(self) -> None:
'''
Perform an episode
'''
state = self._reset()
trajectory = []
while True:
action = self._behavior_policy(state)
next_state, reward, terminated = self.env.step(action)
trajectory.append((state, action, reward))
state = next_state
if terminated:
break
G = 0
W = 1
while len(trajectory) > 0:
state, action, reward = trajectory.pop()
G = self.gamma * G + reward
p_x, p_y, v_x, v_y = state[0, 0], state[0, 1], \
state[1, 0], state[1, 1]
self.C[p_x, p_y, v_x, v_y, action] += W
self.Q[p_x, p_y, v_x, v_y, action] += W / self.C[p_x, p_y, v_x, \
v_y, action] * (G - self.Q[p_x, p_y, v_x, v_y, action])
self.pi[p_x, p_y, v_x, v_y] = self._greedy_policy(state)
if action != self.pi[p_x, p_y, v_x, v_y]:
break
W += 1 / (1 - self.epsilon + self.epsilon / 9)
def run(self) -> np.ndarray:
for ep in trange(self.n_eps):
self._run_episode()
return self.pi
if __name__ == '__main__':
track = ['WWWWWWWWWWWWWWWWWW',
'WWWWooooooooooooo+',
'WWWoooooooooooooo+',
'WWWoooooooooooooo+',
'WWooooooooooooooo+',
'Woooooooooooooooo+',
'Woooooooooooooooo+',
'WooooooooooWWWWWWW',
'WoooooooooWWWWWWWW',
'WoooooooooWWWWWWWW',
'WoooooooooWWWWWWWW',
'WoooooooooWWWWWWWW',
'WoooooooooWWWWWWWW',
'WoooooooooWWWWWWWW',
'WoooooooooWWWWWWWW',
'WWooooooooWWWWWWWW',
'WWooooooooWWWWWWWW',
'WWooooooooWWWWWWWW',
'WWooooooooWWWWWWWW',
'WWooooooooWWWWWWWW',
'WWooooooooWWWWWWWW',
'WWooooooooWWWWWWWW',
'WWooooooooWWWWWWWW',
'WWWoooooooWWWWWWWW',
'WWWoooooooWWWWWWWW',
'WWWoooooooWWWWWWWW',
'WWWoooooooWWWWWWWW',
'WWWoooooooWWWWWWWW',
'WWWoooooooWWWWWWWW',
'WWWoooooooWWWWWWWW',
'WWWWooooooWWWWWWWW',
'WWWWooooooWWWWWWWW',
'WWWW------WWWWWWWW']
track2 = ['WWW+++++++WWWWWWWW',
'WWWoooooooWWWWWWWW',
'WWWoooooooWWWWWWWW',
'WWWoooooooWWWWWWWW',
'WWWoooooooWWWWWWWW',
'WWWoooooooWWWWWWWW',
'WWWoooooooWWWWWWWW',
'WWWWooooooWWWWWWWW',
'WWWWooooooWWWWWWWW',
'WWWW------WWWWWWWW']
velocity_unchanged_prob = 0.1
env = RaceTrack(track)
gamma = 0.9
epsilon = 0.1
n_eps = 10000
off_policy_mc_control = OffPolicyMonteCarloControl(env, gamma, epsilon, n_eps)
policy = off_policy_mc_control.run()
trace = np.zeros((policy.shape[0], policy.shape[1]))
state = env.reset()
for _ in range(1000):
p_x, p_y, v_x, v_y = state[0, 0], state[0, 1], state[1, 0], state[1, 1]
trace[p_x, p_y] += 1
action = policy[p_x, p_y, v_x, v_y]
next_state, reward, terminated = env.step(action)
state = next_state
if terminated:
break
trace = (trace > 0).astype(np.float32)
trace += env.position_space
plt.imshow(np.flipud(trace.T))
plt.savefig('./racetrack_off_policy_control.png')
plt.close()